1,6-Anhydro-4-O-benzyl-β-D -glucopyranose

1,6-Anhydro-4-O-benzyl-β-D -glucopyranose

101 PAUL A. SEIB Carbohydrate Chemistry Group, The Institute of Paper Chemistry, Appleton, Wisconsin 549ZI (U.S. A.) (ReceivedApril 8th, 1968; in r...

658KB Sizes 0 Downloads 6 Views

101

PAUL A. SEIB

Carbohydrate Chemistry Group, The Institute of Paper Chemistry, Appleton, Wisconsin 549ZI (U.S. A.)

(ReceivedApril 8th, 1968; in revisedform, May

Zist, 1968)

AEsrRAm

Bemylation and

of phenyl 2&l-tri-O-acetyl-fi-D-glucopyranoside oxide

(1)with benzyl

N,N-dimethylformamide 57% phenyl2,3,6-t&O(2). Deacetylaticn of 2 and treatment with

hot alkali converted 2 into crystalline 1,6-anhydro-4-O-benzyl-B-D-glucopyranose (3) in high yield. Methylation or acetylation of 3 followed in each case by hydrogenation over palladium gave 1,6-anhydro-2,3-di-O-methyland pyranose and rebTectively_ of and of product aniline the 2,3-di-O-methyl-N-phenyl-D-ghtcosylamine. Methylation of 8 with diazomethane followed by deacetylation yielded 1,6-anhydro4CLmethylB-D-glucopyranose (11). I?ATRODUCTION

In our investigation of the mechanism of acid-catalyzed polymerization of l,&nhydro-P-II-glucopyranose (levoglucosan), we had need for 1,6-anhydrokojibiose and 1,6-anhydrosophorose. For this purpose, we have prepared and characterized 1,6-anhydro-4-U-benzyl-/I-D-glucopynose (3). Treatment of 3 under Koenigs-Knorr conditions would be expected to produce principally (l-+2)-linked l,Qanhydrodisaccharides, since the hydroxyl group on C-3 of levoglucosan is much less reactive’ -’ than the hydroxyl group on C-2 or C-4. Compound 3 is also of interest, as it could probably be used to prepare ~glucans that are less highly branched than those obtained from levoglucosan. The sequence of reactions used to synthesize and identify compound 3 is shown in Scheme J. Treatment of phenyl 2,3,4-tri-O-acetyl-6-O-trityl-/I-D-glucop~anoside with hydrogenbromideinaceticacidgavecompoundl, whichcrystallizedindimorphicstates, one shaped as prisms having m-p. 137-13S”, the other as fine needles having m-p. 143-144”. Apparently, neither of .these forms corresponds to the one (m.p. 114“) previously reported’, and furthermore, the measured specific rotation [a];’ - lg.9 +O.S” (c 2.1, chloroform) difFered from the reported value [cz]$,’ -28.3° (c 7.2, chloroform). &cause of these discrepancies, and because acetyl migration cquld lead Carbohyd. Res-, 8 (1968) 101-109

152O)with 5% SE-30 on DMCS Chromosorb W (5 ft x l/8 in i-d.) showed one peak. The n.m.r. data for 8 in chIoroform-d were: 7.90, 7.88 (each 3 protons, s, acetyl), 7.10-6.80 (1 proton, m, hydroxyl), 6.51-5.82 (3 protons, m), 5.50-5.14 (3 protons, m), 4.62-4.52 (1 proton, m, anomeric proton). An analytical sampIe of 8, distilled at 90100”/0.15-0.20mm, had [a]$’ -45” (c 4.9, chloroform). Anal. Calc. for C,,-,H,,07: C, 48.78; H, 5.73. Found: C, 49.03; H, 5.97. Syrupy 2,3_hi-O-acetyl-1.6-anhydro-/I-D-glucopyranose(180 mg, 0.73 mmole) was methyIated’ with diazomethane-boron trifluoride reagent. The product, yield 184mg (90%), was deacetylatedin the normal way with sodium methoxide in methanol, to produce 100 mg (78%) of a chromatographically pure (RF 0.35, t.l.c., 9:l ethyl acetate-methanol) Cmethyl ether (ll), which crystallized slowly from a mixture of acetone and petroleum ether (30-60”). A total of two crops of crystals gave 65 mg (51%) of crude material, which was recrystallized once to a constant m.p. of 67-68”; [[email protected] - 64” (c 3.0, acetone). The mixed m.p. with a sample of 11 prepared by a dEerent procedure9 was 67-68”. ACKNOWLEDGMENTS

The author is indebted to Messrs. D. C. Johnson, E. E. Dickey, and L. Schroeder for helpful discussions. REFERENCES 1 G. ZEMPL&N,Z.CS~~R~S,AND S. ANGYAL, Ber., 70(1937) 1548. 2 M.&RN*, V. GUT, AND J-PAC.&K, COIL Czech.Chem. Commun.,26 (1961)2542. 3 R. W. JEANLOZ, A. M. C. RAPIN,AND S. HAKOMORI, /. Org. Chem., 26 (1961) 3939. 4 J. DAS CARVALHO,W. PRINS,AND C. SCHUERCH, J- Amer. Chem. Sot., 81 (1959) 4054. 5 B. HELFERICHAND F.STRAUSS,J.Prakr.Cbem., 142 (1935) 13. 6 A. S.PERUN. Can. J. Chern., 44 (1966) 539; H. S. EL KHADEM, D. HORTON, AND T. F. PAGE, JR., J. Org. Chem., 33 (1968) 734. 7 I.0. MASTRONARDI, S. M. FLEhto-n, J. 0. DEFEXRARI,AND E. G. GROS, Carbohyd. Res., 3 (1966) 177. 8 I. CROON AND B. LINDBERG, Acta Chem. &and., I3 (1959) 593. 9 P. WOLLWAGE AND P. A. SEIB, to be published. 10 J. C. JOCHIM~, G. TAXGEL, A. SEEL~GER, P. LUTZ, AND H. E. DRIESEN, Tetraitedron Lert., (1967) 4363. 11 H. SPEDDING, Adoan. Curbohyd. Chem., 19 (1964) 23. 12 S. M. KIM, R. BENTLEY, AND C. C. SWEZLEY, Curbohyd. Res., 5 (1967) 373. 13 T. E. ACREE,C. Y. LEE, AND R. S. SHALUNBERGER, Abstracts Papers Amer. Chem. Sot. Meeting, 155 (1968) 24~. 14 R. W. JEANLOZ, A. M. C. RAPIN, AND S. IIAKOMORI, J. Org. Chem., 26 (1961) 3939. 15 L. D. HALL AND L. HOUGH, Proc. Chem. Sot., (1962) 382. 16 E. M. MONTGOMERY, N. K. RICI-ITMYER, .~ND C. S. HUDSON, J- Amer. Chem. Sot., 64 (1942) 690, 17 T. I. DEBOER AND H. J. BACKER, Org. Syn., 36 (1956) 16. 18 K. FRE&ENBERG, H. Hoc HSTEITER, AND H. ENGELS, Ber., 58 (1925) 666. 19. J. C. SOWDEN AND D. J. KUENNE, J. Amer. Chem. Sot., 74 (1952) 686; P. A. FXNAN AND C. D. WARREN, J. Chem. Sot., (1962) 3089; R. U. LEXIEIJXAND J. D. STEVENS, Can J. Chem., 44 (1966) 249. 20 K. FREIJDENBERGAND E. PLANKENHORN. ANI., 536 (1938) 257. 21 R. U. LEMIEUX AND J. D. STEVENS, Cm. J. Chem., 43 (1965) 2059. 22 L. HOUGH, J. K. N. JONES. AND W. H. WADMAN, 3. Chem. Sot., (1950) 1702. 23 E. SCHL~~CEITERER AND M. STACEY, L Chem. SOL, (1945) 776.

Curbohyd.

Res., 8 (1968) 101-109