Cenozoic vegetation and climate change in Anatolia — A study based on the IPR-vegetation analysis

Cenozoic vegetation and climate change in Anatolia — A study based on the IPR-vegetation analysis

Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Pal...

3MB Sizes 0 Downloads 3 Views

Recommend Documents

No documents
Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Contents lists available at ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo

Cenozoic vegetation and climate change in Anatolia — A study based on the IPR-vegetation analysis Mine Sezgül Kayseri-Özer Dokuz Eylül University, Institute of Marine Science and Technology, Haydar Aliyev Bul. No: 100, 35430 İnciraltı-İzmir, Turkey

a r t i c l e

i n f o

Article history: Received 17 April 2015 Received in revised form 2 October 2016 Accepted 5 October 2016 Available online 17 October 2016 Keywords: Anatolia IPR-vegetation analysis Coexistence approach Macro-microfloras Late Oligocene Miocene-Pliocene

a b s t r a c t Reconstructions of past vegetation and climate are crucial for our understanding of regional palaeovegetation. In this study the regional palaeovegetational and palaeoclimatic properties of the late Oligocene and Miocene-Pliocene interval of Anatolia are presented using the Integrated Plant Record (IPR) vegetation analysis and the Coexistence Approach (CA). The IPR analysis allows the reconstruction of six types of zonal vegetation: broad-leaved deciduous forests, mixed mesophytic forests, broad-leaved evergreen forests, subhumid sclerophyllous forests, xeric open woodlands, and xeric grasslands or steppes all identified from the macro-microfloras of Anatolia. In the late Oligocene, warm subtropical and humid climatic conditions prevailed, and the palaeovegetation was represented by mixed mesophytic forests. From the late early-early middle Miocene to late middle Miocene temperature decreased slightly. Broad-leaved evergreen and mixed mesophytic forests and ecotones between these forests were the common zonal vegetation types in Anatolia during this period. According to these palaeoclimatic data based on pollen floras, it can be stated that the middle Miocene cooling affected the terrestrial areas of Anatolia. Besides, precipitation values of the late middle Miocene were slightly higher compared to the late early Miocene. Increasing precipitation rates can be interrelated with increasing humidity. Furthermore, low percentages of the sclerophyllous + legume-type components and a high percentage of the broad-leaved deciduous components support increased humidity in Anatolia during the late middle Miocene. Temperatures increased from the Tortonian to the beginning of the Messinian, and thereafter decreased significantly during the Messinian. Precipitation distinctly increased in Anatolia at the Mio-Pliocene transition. Moreover, palaeoclimatic and zonal vegetational changes in Anatolia during the late Miocene-Pliocene are first identified, and mixed mesophytic forests, ecotone between broad-leaved evergreen and mixed mesophytic forests, subhumid sclerophyllous forests, xeric open woodlands and zonal xeric grasslands or steppes vegetation type are recorded from this time interval. The cooling from the early to late Pliocene is recorded based on the numerical climatic values and the increase in the broad-leaved deciduous components. © 2016 Elsevier B.V. All rights reserved.

1. Introduction The palaeovegetational and palaeoclimatic evolution of Europe from the Eocene to Pliocene was derived from various studies based on palaeobotanical records (e.g. Erdei, 1995; Erdei and Kvacĕk, 1997; Mosbrugger and Utescher, 1997; Bruch and Gabrielyan, 2002; Ivanov et al., 2002, 2007a, 2007b; Bruch et al., 2002, 2004, 2006; Kvaček et al., 2002; Uhl et al., 2003; Worobiec, 2003; Erdei et al., 2007; Kvaček, 2007; Syabryaj et al., 2007; Utescher et al., 2007a, 2007b, 2009, 2012, 2014; Barrón et al., 2010). The coal basins of Anatolia have a rich plant fossil record. Many microfloras of these coal basins were described, and palaeoclimatic change from the Eocene to Miocene was recorded

E-mail address: [email protected]

http://dx.doi.org/10.1016/j.palaeo.2016.10.001 0031-0182/© 2016 Elsevier B.V. All rights reserved.

in palynological studies (e.g. Akgün et al., 2007; Kayseri and Akgün, 2008; Kayseri-Özer et al., 2014a, 2014b; Kayseri-Özer, 2014). Furthermore, limited numbers of Miocene leaf floras recovered in Anatolia were published, and these floras were recorded from the Çanakkale-Çan, Milas-Ören-Karacaağaç and Hüssamlar, ManisaSoma, Aydın-Şahinali, İzmir-Akçaşehir-Tire regions in Western Anatolia and in the Afyon-Dumlupınar, Kütahya-Tunçbilek, Uşak-İlyaslı, Ankara-Beşkonak and Güvem regions in Central Anatolia (Paicheler and Blanc, 1978; Mädler and Steffens, 1979; Gemici et al., 1991, 1992, 1993; Kasaplıgil, 1976; Yavuz-Işık, 2008). However, detailed palaeovegetational interpretations of these Anatolian micromacrofloras are not available to-date. The Integrated Plant Record vegetation analysis (IPR-vegetation analysis) was first introduced by Kovar-Eder and Kvaček (2003), and the authors emphasized that this anlaysis method was useful for global

38

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

vegetational correlations. Thus, the authors reconstructed the palaeovegetation for the Cenozoic of Europe using this method. So far it has been applied to N 300 fossil and modern sites, integrating foliar, carpological and pollen data of thousands of taxa (e.g. Kovar-Eder and Kvaček, 2003, 2007; Kovar-Eder et al., 2006, 2008; Bruch et al., 2007; Teodoridis et al., 2009, 2011; Teodoridis, 2010; Jacques et al., 2011; Kvaček et al., 2011). Since then this method has been used in many studies to reconstruct past and modern vegetation in SE China, Japan and European countries (e.g. Kovar-Eder et al., 2006, 2008; Teodoridis et al., 2011). In recent decades, quantitative approaches for palaeoclimate reconstructions using plant fossils (leaf, carpological and pollen assemblages) rapidly developed (e.g. Wolfe, 1993; Mosbrugger and Utescher, 1997; Mosbrugger, 1999; Bruch and Gabrielyan, 2002; Mosbrugger et al., 2005; Bruch et al., 2002, 2004, 2006; Ivanov et al., 2002, 2007a, 2007b; Kvaček et al., 2002; Uhl et al., 2003; Worobiec, 2003; Erdei et al., 2007; Kvaček, 2007; Syabryaj et al., 2007; Utescher et al., 2007a,

2007b, 2009; Barrón et al., 2010). More recently, some authors have tried to understand past terrestrial palaeoclimate and its evolution in geological history during the Cenozoic in Anatolia (e.g. Akgün et al., 2007; Kayseri and Akgün, 2008, 2009; Kayseri-Özer, 2014). The most important aim of this study is to reconstruct the palaeovegetational change of the late Oligocene and Miocene-Pliocene interval based on a total of 86 macro-micro floras from Western, Central and Eastern Anatolia using IPR-vegetation analysis. The other significant aim of this study is to evaluate palaeoclimatic changes in Anatolia from the late Miocene to Pliocene-earliest Pleistocene based on the Coexistence Approach method. 2. Materials and methods In this study 10 macrofloras from the early-middle Miocene were evaluated using the IPR for palaeovegetational analysis (Fig. 1 and Table 1). In addition, 77 microfloras including 14 microfloras from the

Fig. 1. Sample location maps of the late Oligocene, late early-early middle Miocene, late middle Miocene, late Miocene and Pliocene.

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

39

Table 1 List of the taxa of micro-macrofloras identified from the previous studies in Turkey.

Floras

Region

Sum of taxa Age

References

Macro flora

İzmir-Tire

16

Regional correlation

Gemici et al. (1992, 1993)

Macro flora

Aydın-Şahinali

40

Mammalian records

Gemici et al. (1991, 1992, 1993)

Macro flora

Manisa-Soma

76

Mollusc fossil and palynostratigraphic data

Macro flora

Uşak-İlyaslı

14

middle Miocene (Langhian-early Serravallian)

Nebert (1978), Mädler and Steffens (1979), Akgün et al. (1986), Gemici et al. (1991), Seyitoğlu and Scott (1991), Takahashi and Jux (1991), Akgün (1993), İnci (1998, 2002) Ercan et al. (1978), Mädler and Steffens (1979), Seyitoğlu and Scott (1991), Seyitoğlu (1997) Ersoy et al. (2014)

Macro flora

Kütahya-Tunçbilek

15

Macro flora

Çanakkale-Çan-Demirci

18

late middle Miocene (early-middle Serravallian) late middle Miocene (early-middle Serravallian)

Macro flora

Muğla-Hüssamlar and Karacaağaç

29

Macro flora

Ankara-Güvem and Beşkonak

100

Macro flora

Afyon-Dumlupınar and İkiz Dere

12

Micro flora

Edirne

61

late early-early middle Miocene (Late Burdigalian; latest Burdigalian-Langhian) late early Miocene (late Burdigalian) middle Miocene (Langhian-early Serravallian) late Oligocene

Micro flora

Kırklareli

25

late Oligocene

Micro flora

Lüleburgaz

25

late Oligocene

Micro flora

İstanbul-Silivri

35

late Oligocene

Micro flora

İstanbul-Büyükçekmece

22

late Oligocene

Micro flora Micro flora Micro flora Micro flora

İstanbul-Ağaçlı Çanakkale-Tayfur Çorum-Güvendik Fm. Denizli-Tokça

33 85 85 67

late Oligocene late Oligocene late Oligocene late Oligocene

Micro flora

Muğla-Alatepe

70

late Oligocene

Micro flora

Denizli-Kale-Tavas-Sağdere

46

late Oligocene

Micro flora

Denizli-Kale-Tavas-Çaykavuştu 15

late Oligocene

Micro flora

Denizli-Kale-Tavas-Karadere

18

late Oligocene

Micro flora

Denizli-Kale-Tavas-Mortuma

48

late Oligocene

Micro flora

Isparta-Yarıkkaya

25

Micro flora

Isparta-Yukarıkaşıkara

30

Micro flora

34

Micro flora

İzmir-Kemalpaşa (Dereköy Area) İzmir-Kemalpaşa (Yeniköy Area) Manisa-Soma

Micro flora

Balıkesir-Bigadiç

41

Micro flora

Balıkesir-Gönen

22

late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene

Micro flora

40 44

late early-early middle Miocene (latest Burdigalian-Langhian) middle Miocene (early-middle Serravallian) late early and middle Miocene (latest Burdigalian-Langhian)

Ostracod, fish fossils, mammalian data, lithostratigraphic and isotopic data of the volcanics (16–17 Ma) correlation with neighboring regions Ostracods and palynomorphs assemblages

Mammalian data

Mammalian fossils MN4e-MN5 and Sr87/Sr86 isotopic data

Radiometric record, 17.9–17.8 Ma Lithostratigraphic correlation

Dinoflagelates, palynoflora, Mammalian Lithostratigraphic correlation Dinoflagelates, palynoflora, Lithostratigraphic correlation Dinoflagelates, palynoflora, Lithostratigraphic correlation Dinoflagelates, palynoflora, Lithostratigraphic correlation Dinoflagelates, palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Mammalian and ısotopic data Dinoflagelates, palynoflora, Lithostratigraphic correlation Palynoflora, bivalvia and Sr87/Sr86 isotopic data Sporomorphs, Foraminifers, Lithostratigraphic correlation

Nebert (1960), Baş (1986), Seyitoğlu and Scott (1991) Gillet et al. (1978), Mädler and Steffens (1979), Ünay and De Bruijn (1984), Şentürk et al. (1987), Ediger (1990), Sakınç et al. (1999), Kaya (1989) Gürer and Yılmaz (2002), Kayseri-Özer et al. (2014b)

Kasaplıgil (1976), Paicheler and Blanc (1978), Yavuz-Işık (2008) Mädler and Steffens (1979)

Mädler and Steffens (1979), Ediger (1981a, 1981b), Ediger and Batı (1988), Ediger and Alişan (1989), Elsik et al. (1990), Akyol and Akgün (1995), Batı (1996), Saraç (2003)

Nakoman (1968) İslamoğlu et al. (2010), Akgün et al. (2013) Kayseri et al. (2017) Akkiraz and Akgün (2005) Gürer and Yılmaz (2002), Kayseri (2010)

Palynoflora, Mammalian data,

Nebert (1956, 1957, 1961), Benda (1971a, 1971b), Akgün and Sözbilir (2001), Sözbilir (2002) Nebert (1956, 1957, 1961), Benda (1971a, 1971b), Akgün and Sözbilir (2001), Sözbilir (2002) Nebert (1956, 1957, 1961), Benda (1971a, 1971b), Akgün and Sözbilir (2001), Sözbilir (2002) Nebert (1956, 1957, 1961), Benda (1971a, 1971b), Akgün and Sözbilir (2001), Sözbilir (2002) Akgün and Akyol (1992), Saraç (2003)

Palynoflora, Mammalian data,

Akgün and Akyol (1992), Saraç (2003)

Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation

Saraç (2003), Kayseri-Özer et al. (2014b) Saraç (2003), Kayseri-Özer et al. (2014a)

Palynoflora, Lithostratigraphic correlation

Nebert (1978), Akgün et al. (1986), Gemici et al. (1991), İnci (1998, 2002) Palynoflora, K-Ar analysis Lithostratigraphic Akyol and Akgün (1990), Helvacı (1995) correlation Palynoflora, Lithostratigraphic correlation Ediger (1990) (continued on next page)

40

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Table 1 (continued)

Floras

Region

Sum of taxa Age

Micro flora

Çanakkale-Çan

22

Micro flora

Ankara-Çayırhan

29

Micro flora

Ankara-Hırkatepe

23

Micro flora

Ankara-Beypazarı

42

Micro flora

Aydın-Kuloğulları

42

Micro flora

Aydın-Başçayır

23

Micro flora

Aydın-Başçayır

40

late early-early middle Miocene

Micro flora

Aydın-Ilıdağ

22

late early-early middle Miocene

Micro flora

Aydın-Kızılcayer

14

late early-early middle Miocene

Micro flora

Muğla-Kultak

44

late early-early middle Miocene

Micro flora

Muğla-Karacaağaç

48

Micro flora

Muğla-Hüssamlar

44

Micro flora

Samsun-Havza

62

Micro flora

Eskişehir-Koyunağılı

29

Micro flora

Çorum-Alıcık

61

late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late middle Miocene

Micro flora

Çorum-Ayva

53

late middle Miocene

Micro flora

Çorum-Dodurga

52

late middle Miocene

Micro flora

Çorum-Evlik

52

late middle Miocene

Micro flora

Çorum-İkizler

42

late middle Miocene

Micro flora

Çorum-İncesu

36

late middle Miocene

Micro flora

Çorum-İskilip

47

late middle Miocene

Micro flora

Çorum-Kumbaba

38

late middle Miocene

Micro flora

Çorum-Zambal

39

late middle Miocene

Micro flora

Kırşehir-Avcıköy

15

late middle Miocene

Micro flora Micro flora

Kırşahir-Kızılöz Konya-Ilgın

39 38

late middle Miocene late middle Miocene

Micro flora Micro flora Micro flora

Yozgat-Çiçekdağ Yozgat-Çamoluk Aydın-Kızılcayer

50 41 15

late middle Miocene late middle Miocene late middle Miocene

Micro flora Micro flora

Aydın-İncirliova Aydın-Söke

22 31

late middle Miocene late middle Miocene

Micro flora

Aydın-Şahinali

29

late middle Miocene

Micro flora Micro flora Micro flora Micro flora

Aydın-Hasköy Aydın-Köşk Lower Coal Mine Manisa-Akhisar (Çıtak) İzmir-Kemalpaşa-Dereköy

35 18 69 43

late middle Miocene late middle Miocene late middle Miocene late middle Miocene

Micro flora

İzmir-Kemalpaşa-Yeniköy

40

late middle Miocene

Micro flora

İskenderun-Hacıahmetli

27

late Miocene

late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene late early-early middle Miocene

References Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Mammalian data, Magnetostratigraphy Lithostratigraphic correlation Palynoflora, Mammalian data, Magnetostratigraphy Lithostratigraphic correlation Palynoflora, Mammalian data, Magnetostratigraphy Lithostratigraphic correlation Palynoflora, Mammalian data, Magnetostratigraphy Lithostratigraphic correlation Palynoflora, Mammalian data, Foraminifers, Lithostratigraphic correlation Palynoflora, Macroflora Lithostratigraphic correlation Palynoflora, Mammalian data, Macroflora Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Mammalian data Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Mammalian data, Magnetostratigraphy Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Mammalian data, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Mammalian data Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Palynoflora, Dinoflagellates, Lithostratigraphic correlation

Ediger (1990), Kaya (1989, 1992), Forsten and Kaya (1995) Saraç (2003) Saraç (2003) Güngör (1991), Saraç (2003) Akgün and Akyol (1999) Akgün and Akyol (1999), Şen and Seyitoğlu, (2009) Kayseri-Özer and Emre (2013), Kayseri-Özer and Emre (2016), Şen and Seyitoğlu (2009) Kayseri-Özer and Emre (2013), Kayseri-Özer and Emre (2016), Şen and Seyitoğlu, (2009) Kayseri-Özer and Emre (2013), Kayseri-Özer and Emre (2016), Şen and Seyitoğlu (2009) Becker-Platen (1970), Gürer and Yılmaz (2002), Kayseri-Özer et al. (2014b), Hakyemez and Örçen (1982) Gürer and Yılmaz (2002), Kayseri-Özer et al. (2014b) Becker-Platen (1970), Gürer and Yılmaz (2002), Kayseri-Özer et al. (2014b), Kayseri and Akgün (2008), Kayseri-Özer (2014) Kadir and Baş (1996) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Kayseri and Akgün (2008), Kayseri-Özer (2014) Saraç (2003), Kayseri and Akgün (2008), Kayseri-Özer (2014) Akgün et al. (1995), Saraç (2003) Akgün et al. (1995) Karayiğit et al. (1999), Saraç (2003), Akgün et al. (2002) Akgün et al. (2002) Kayseri-Özer and Emre (2013), Kayseri-Özer and Emre (2016), Şen and Seyitoğlu (2009) Akgün and Akyol (1999), Gürer et al. (2001) Akgün and Akyol (1999), Ünay and Göktaş (1999), Gürer et al. (2001), Saraç (2003) Akgün and Akyol (1999),Gürer et al. (2001), Saraç (2003) Akgün and Akyol (1999),Gürer et al. (2001) Akgün and Akyol (1999),Gürer et al. (2001) Yağmurlu (1983), Akgün and Akyol (1987) Saraç (2003), Sözbilir et al. (2011), Kayseri-Özer et al. (2014a) Saraç (2003), Sözbilir et al. (2011), Kayseri-Özer et al. (2014a) Ediger et al. (1996)

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

41

Table 1 (continued)

Floras

Region

Sum of taxa Age

Micro flora

İskenderun-Kızlargözü

29

late Miocene

Micro flora

Nevşehir-Tuzköy

37

Micro flora

Sivas-Yeniçubuk-Akalın

16

Micro flora

Sivas-Yeniçubuk-Karagöl

15

Micro flora

Sivas-Gemerek-Vasıltepe

56

Micro flora

Aydın-Saryköy-Sazak

33

Micro flora

38

Micro flora

Aydın-Hasköy-Upper Coal Mine Aydın-Köşk-Upper Coal Mine

22

Micro flora Micro flora Micro flora

Elazığ Sivas-Hafik Kırıkkale-Balışeyh

25 38 45

latest middle-earliest late Miocene latest middle-earliest late Miocene latest middle-earliest late Miocene latest middle-earliest late Miocene latest middle-earliest late Miocene latest middle-earliest late Miocene latest middle-earliest late Miocene early late Miocene early late Miocene late late Miocene

Micro flora

Kırıkkale-Balışeyh

46

early Pliocene

Micro flora Micro flora Micro flora Micro flora Micro flora

Denizli-Ericek Denizli-Karacaören Erzurum-Horasan Bingöl-Halifan Denizli-Dandalas

26 19 15 23 13

Micro flora

Denizli-Bıçakçı

27

early Pliocene early Pliocene late Pliocene late Pliocene latest Pliocene-earliest Pleistocene early Pleistocene (late Gelasian)

References Palynoflora, Dinoflagellates, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Mammalian data, palynoflora

Ediger et al. (1996) Akgün et al. (1995)

Palynoflora, Lithostratigraphic correlation

Saraç (2003), Kayseri and Akgün (2008), Kayseri-Özer (2014) Saraç (2003), Kayseri and Akgün (2008), Kayseri-Özer (2014) Saraç (2003), Kayseri and Akgün (2008), Kayseri-Özer (2014) Akgün and Akyol (1999)

Palynoflora, Lithostratigraphic correlation

Akgün and Akyol (1999)

Palynoflora, Lithostratigraphic correlation

Akgün and Akyol (1999)

Palynoflora; Mammalian data Mammalian data, palynoflora Mammalian, isotopic data, regional correlation Mammalian, isotopic data, regional correlation Mammalian data Mammalian data Palynoflora, Lithostratigraphic correlation Palynoflora, Lithostratigraphic correlation Mammalian data

Saraç (2003), Kayseri-Özer (2014) Akgün et al. (2000), Saraç (2003) Kayseri Özer et al. (2017)

Jimenez-Moreno et al. (2015) Jimenez-Moreno et al. (2015) Bozkuş (1978) Nakoman (1968) Jimenez-Moreno et al. (2015)

Mammalian data

Jimenez-Moreno et al. (2015)

Mammalian data, palynoflora Mammalian data, palynoflora

late Oligocene, 21 microfloras from the late early to early middle Miocene, 23 microfloras from the late middle Miocene, 12 microfloras from the late Miocene and 7 microfloras from the Pliocene-earliest Pleistocene were investigated using the IPR method (Fig. 1 and Table 1). There are several published macrofloral studies from Anatolia (e.g. Paicheler and Blanc, 1978; Mädler and Steffens, 1979; Gemici et al., 1991, 1992, 1993; Kasaplıgil, 1976; Yavuz-Işık, 2008). The most detailed study was carried out by Mädler and Steffens (1979), describing macrofloras from Western and Central Anatolia (Manisa-Soma, Manisa-Akhisar, Denizli-Kurbalık-Acıdere-Çukurköy, Aydın-Çavdar, AydınŞahinali, Uşak-İlyaslı, Afyon-Dumlupınar-İkizdere, Kütahya-TunçbilekTavşanlı-Alabarda, Balıkesir-Kavacık, Çanakkale-Çan-Demirci, AnkaraBeynam and Kızılcahamam regions). However, ten floras, namely the Uşak-İlyaslı, Afyon-Dumlupınar-İkizdere, Kütahya-Tunçbilek-TavşanlıAlabarda, and Çanakkale-Çan-Demirci floras described by Mädler and Steffens (1979), were used for palaeovegetation interpretations using the IPR method because of the presence of diverse fossil leaf remains (Fig. 1; Tables 1 and 2). However, floras with problematic taxa, i.e. those that cannot be reasonably assigned to any modern taxon or floras without sufficient zonal taxa (generally b 10) were excluded from this study (Kovar-Eder et al., 2008).

2.1. Integrated Plant Record vegetation analysis (IPR vegetation analysis) The Integrated Plant Record vegetation analysis (IPR-vegetation analysis) is a semi-quantitative method developed by Kovar-Eder et al. (2006) to evaluate zonal vegetation based on the plant fossil record (leaf, fruit, and pollen assemblages). It has been applied to N300 fossil and modern sites, integrating foliar, carpological and pollen data of thousands of taxa (Kovar-Eder et al., 2006, 2008; Teodoridis et al., 2009, 2011; Teodoridis, 2010; Jacques et al., 2011). This analysis attempts to incorporate taxonomy, physiognomy, and autecological properties of Cenozoic plants as an objective assessment of the fossil

Kayseri Özer et al. (2017)

vegetation (Kovar-Eder and Kvaček, 2007; Kovar-Eder et al., 2008). Zonal and azonal plant elements are assigned to thirteen basic taxonomic-physiognomic groups, termed components, defined to reflect key ecological characteristics of an assemblage (Kovar-Eder and Kvaček, 2003, 2007; Jechorek and Kovar-Eder, 2004; Kovar-Eder et al., 2008). Teodoridis et al. (2011) recorded the taxonomic-physiognomic grouping and defined the conifer components (CONIF), broad-leaved deciduous components (BLD), broad-leaved evergreen components (BLE), sclerophyllous components (SCL), legume-like components (LEG), zonal palm components, dry herbaceous components (D-Herb), mesophytic herbaceous components (M-Herb), and also azonal components, i.e. azonal woody components, azonal non-woody components and aquatic components (Aquatic). The components Problematic Taxa includes elements with uncertain taxonomic-physiognomic affinity (Kovar-Eder et al., 2006, 2008; Teodoridis et al., 2009, 2011; Teodoridis, 2010; Jacques et al., 2011). The following six zonal vegetation types were established by KovarEder and Kvaček (2007) and Kovar-Eder et al. (2008) (Table 3): zonal temperate to warm-temperate broad-leaved deciduous forests (broadleaved deciduous forests “BLDF”), zonal warm-temperate to subtropical mixed mesophytic forests (mixed mesophytic forests “MMF”), zonal subtropical broad-leaved evergreen forests (broad-leaved evergreen forests “BLEF”), zonal subtropical, subhumid sclerophyllous or microphyllous forests (subhumid sclerophyllous forests “ShSF”), zonal xeric open woodlands (open woodland), and zonal xeric grasslands or steppe (xeric grassland).

2.2. Coexistence Approach (CA) The CA, developed by Mosbrugger and Utescher (1997), follows the principle of the Nearest Living Relative (NLR) concept (Mosbrugger, 1999). It is based on the assumption that the climatic requirements of fossil species (pollen and spores, fruits and seeds, leaves, wood) are

42

Table 2 Taxonomic, physiognomic and autecology grouping of floral components and leaf flora associations of Anatolia. late early late early Miocene Miocene

Age Location

Araliaceae Aralia sp. Hedera sp. Asclepiadaceae Berberidaceae ? Berberidaceae Berberis aff. chinensis Mahonia sp. Betulaceae Alnus julianaeformis Alnus gaudinii Alnus cecropiaefolia Alnus adscendens Alnus phocaeensis Alnus rottensis Alnus sp. cf. Ampelopsis sp. Betula subpubescens Betulus alba

BLD BLD/Azonal woody BLD/Azonal woody BLD BLD Problematic taxa BLD BLD

1 0.5/0.5 0.5/0.5 1 1 1 1 1

BLD/Azonal woody BLD/Azonal woody BLD/Azonal woody

0.25/0.75 0.5/0.5 0.5/0.5

Aquatic

1

SCL Problematic taxa Problematic taxa BLD/BLE BLD/BLE

1 1 1 0.5/0.5 0.5/0.5

Azonal non woody D-HERB

1 1

BLD/BLE/SCL/Azonal woody

0.25/0.25/0.25/0.25

BLD BLD/Azonal woody Problematic taxa

1 0.5/0.5 1

BLD/BLE/SCL/Azonal woody BLD/BLE/SCL/Azonal woody BLD/SCL/Azonal woody SCL BLD/Azonal woody BLD BLD/Azonal woody Azonal woody BLD Problematic taxa BLD/Azonal woody BLD BLD BLD/Azonal woody

0.1/0.2/0.4/0.3 0.1/0.2/0.4/0.3 0.5/0.3/0.2 1 0.5/0.5 1 0.5/0.5 1 1 1 0.5/0.5 1 1 0.5/0.5

AnkaraGüvem

late early-early middle Miocene

late early-early middle Miocene (Langhian-early middle Serravallian) Miocene

AnkaraMilasBeşkonak Manisa-Soma Karacaağaç-Hüssamlar İzmir-Tire

middle Miocene (early-middle Serravallian)

* * * * * *

late middle Miocene (early-middle late middle Serravallian) Miocene

Afyon-Dumlupınar Kütahyaand İkiz Dere Aydın-Şahinali Uşak-İlyaslı Tunçbilek

* * *

early middle Miocene

* *

*

ÇanakkaleÇan-Demirci

*

*

* * *

*

*

*

* * * *

* * * *

*

* *

*

* * * *

*

*

*

* *

* * * * * * *

* * * *

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Family and genus Aceraceae Acer dasycarpoides Acer trilobatum Acer augustilobum Acer camppestre Acer integerrimum Acer opalus Acer palaeosaccharinum Acer pseudomonspessulanum Acer tricuspidatum Acer cf. decipens Acer sp. Alismataceae Sagittaria sp. Anacardiaceae Pistacia lentiscus Astronium truncatum Astronium sp. Rhus sp. cf. Rhus sp. Apocynaceae Apocynophyllum sp. Nerium sp. Aquifoliaceae Ilex sp.

Vegetational groups and percentage (Kovar-Eder et al., 2006)

late early-early middle Miocene

Dryopteridaceae Dryopteris sp. Ebenaceae Diospyros brachysepala Diospyros cf. anceps Diospyros sp. Ephedraceae Ephedra aff. major Ericaceae Vaccinium sp. Euphorbiaceae Equisetaceae Equisetum sp. Fabaceae Calpurnia europaea Cassia hyperborea cf. Cassia sp. Cercis antiqua Cercis sp. Colutea salteri

BLD/Azonal woody BLD/Azonal woody BLD BLD BLD BLD BLD/Azonal woody BLD/Azonal woody BLD/Azonal woody

0.5/0.5 0.5/0.5 1 1 1 1 0.5/0.5 0.5/0.5 0.5/0.5

*

Problematic taxa BLE/SCL

1 0.5/0.5

*

BLD/SCL

0.5/0.5

*

Problematic taxa

1

*

Aquatic

1

*

BLD/Azonal woody

0.25/0.75

BLD/Azonal woody

0.5/0.5

BLD BLD

1 1

Azonal woody Azonal woody Azonal woody CONİF/Azonal woody Azonal woody CONİF/Azonal woody CONİF

1 1 1 0.5/0.5 1 0.5/0.5 1

MHERB-azonal non woody elements

0.2/0.8

*

Problematic taxa

1

*

BLD BLD BLD/BLE

1 1 0.5/0.5

*

D-HERB

1

*

BLD/SCL/Azonal woody BLD/BLE/SCL/D-HERB/ MHERB/Azonal woody

0.33/0.33/0.33 0.1/0.2/0.2/0.2/0,2/0.1

* *

D-HERB/M-HERB

0.5/0.5

*

Problematic taxa Problematic taxa Problematic taxa Problematic taxa Problematic taxa Problematic taxa

1 1 1 1 1 1

* *

* * * * * * * *

*

*

*

*

* * * 1

* *

*

*

* *

*

*

*

*

*

* * *

*

*

*

* *

*

*

* *

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Betulaaff. luminifera Betula sp. Carpinus miocenica Carpinus grandis Carpinus sp. cf. Carpinus miocenica Carya serraefolia Carya cf. serraefolia Carya cf. minor Burceraceae Bursera serrulata Buxus cf. sempervirens Cannabaceae Celtis sp. Caesalpinioides Gymnocladus sp. Ceratophyllaceae Ceratophyllum submersum Cercidiphyllaceae Cercidiphyllum crenatum Cercidiphyllum sp. Cornaceae cf. Cornus sp. Cornus sp. Cupressaceae Glyptostrobus europaeus Glyptostrobus lineatus Glyptostrobus sp. Taxodium distichum Taxodium dubium Taxodium sp. cf. Thuja occidentalis Cyperaceae Cyperacites lacustris

*

*

*

* *

*

* * 43

(continued on next page)

44

Table 2 (continued)

late early late early Miocene Miocene

Age Location

Problematic taxa BLD BLD/BLE/SCL BLE BLD

BLD BLE BLE BLD/SCL BLD BLD BLD Problematic taxa BLD BLD Problematic taxa BLD/BLE/SCL/Azonal woody Quercus ilex Problematic taxa Quercus infectoria Problematic taxa Quercus kubinyii BLD/SCL Quercus lusitanica Problematic taxa Quercus mediterranea BLE/SCL Quercus neriifolia BLE/SCL Quercus drymeja BLE/SCL Quercus heidingeri Problematic taxa Quercus polymorpha Problematic taxa Quercus seyfriedii Problematic taxa Quercus sosnovskii Problematic taxa Quercus zorastri BLE/SCL Quercus rhenana Azonal woody Quercus stranjensis Problematic taxa Quercus trojana Problematic taxa Quercus urophylla Problematic taxa Quercus cf. infectoria Problematic taxa Quercus cf. mediterranea BLE/SCL Quercus cf. trojana Problematic taxa Quercus aff. lonchitis BLE/SCL Quercus aff. polycarpa Problematic taxa Quercus aff. trojana Problematic taxa cf. Quercus neriifolia BLE/SCL cf. Quercus drymeja BLE/SCL Quercus sp. BLD/BLE/SCL/Azonal woody Fontinalaceae cf. Fontinalis L. Problematic taxa Gramineae Gramineae D-HERB/M-HERB/Azonal woody

1 1 0.5/0.25/0.25 1 1 1 1 1 0.5/0.5 1 1 1 1 1 1 1 0.25/0.25/0.25/0.25 1 1 0.5/0.5 1 0.5/0.5 0.5/0.5 0.5/0.5 1 1 1 1 0.5/0.5 1 1 1 1 1 0.5/0.5 1 0.5/0.5 1 1 0.5/0.5 0.5/0.5 0.25/0.25/0.25/0.25

AnkaraGüvem

late early-early middle Miocene

late early-early middle Miocene (Langhian-early middle Serravallian) Miocene

AnkaraMilasBeşkonak Manisa-Soma Karacaağaç-Hüssamlar İzmir-Tire

middle Miocene (early-middle Serravallian)

early middle Miocene

late middle Miocene (early-middle late middle Serravallian) Miocene

Afyon-Dumlupınar Kütahyaand İkiz Dere Aydın-Şahinali Uşak-İlyaslı Tunçbilek

ÇanakkaleÇan-Demirci

* * * * * * *

*

*

* * *

*

*

* *

* *

* * * *

*

* * *

* *

* * * *

*

*

*

*

*

* * *

*

*

*

* * *

* * *

* * * * * *

*

* * * *

*

* *

*

*

1

*

0.33/0.33/0.33

*

*

*

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Sophora europaea Sophora miojaponica Sophora sp. Leguminosae Platycarpa miocenica Fagaceae Castanea sp. Castanopsis furcinervis Castanopsis sp. cf. Castanea kubinyi Fagus attenuata Fagus gussonii Fagus ferrugeinea Fagus orientalis Fagus pristina Fagus sp. Quercus coccifera Quercus goepperti

Vegetational groups and percentage (Kovar-Eder et al., 2006)

late early-early middle Miocene

Azonal non woody Azonal non woody

1 1

*

BLD/Azonal woody

0./0.5

*

Problematic taxa Aquatic

1 1

*

Zonal arboreal ferns

1

*

Problematic taxa

1

*

BLE

1

BLD/Azonal woody BLD/Azonal woody BLD/Azonal woody BLD BLD/Azonal woody

0.5/0.5 0.5/0.5 0.5/0.5 1 0.5/0.5

BLE

1

BLE

1

BLE/Azonal woody Problematic taxa BLE BLE

0.75/0.25 1 1 1

BLE BLE Problematic taxa Problematic taxa Problematic taxa BLE

1 1 1 1 1 1

Problematic taxa BLE

1 1

BLD/SCL/Azonal woody Problematic taxa BLD/BLE/Azonal woody Problematic taxa BLE BLD

0.33/0.33/0.33 1 0.33/0.33/0.33 1 1 1

BLD/Azonal woody

0.5/0.5

*

Problematic taxa BLD/BLE/Azonal woody

1 0.3/0.5/0.2

*

BLD/BLE/Azonal woody Azonal woody Problematic taxa Problematic taxa BLD/BLE/Azonal woody Problematic taxa

0.33/0.33/0.33 1 1 1 0.33/0.33/0.33 1

*

* *

*

*

*

* * * * *

*

*

*

*

*

*

*

*

*

* * * *

*

*

* * *

*

* * * * * * * * * * *

*

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Phragmites sp. cf. Phragmites Hammamelideae Liquidambar europaeum Hydrocharitaceae Egeria aff. densa Stratiotes thalictroides Hymenophyllaceae Hymenophyllum dilatatum Hysteriaceae Hysterium sp. Illiciaceae cf. Illicium rhenanum Juglandaceae Carya serraefolia Juglans accuminata Juglans altissima Juglans sp. Pterocarya pterocarpa Lauraceae Cinnamomum polymorphum Cinnamomum scheuchzeri Daphnogene polymorpha Laurus princeps Laurus sp. Laurophyllum primigenium Laurophyllum sp. cf. Laurophyllum Persea princeps Persea indica Persea cf. indica Ocotea heeri Leguminosae Cercis antiqua Leguminosites sp. Magnoliaceae Magnolia ludwigi Magnolia sprengeri Magnolia sturii Magnoliaephyllum sp. cf. Illicium rhenanum cf. Liriodendron sp. Menispermaceae Menispermum sp. Moraceae Ficus lanceolata Ficus sp. Myricaceae Myrica acutiloba Myrica lignitum Myrica pseudolignitum Myrica serotina Myrica banksiaefolia Myrica cf. pseudolignitum

*

* *

* * *

*

* *

*

*

* *

* *

*

* 45

(continued on next page)

46

Table 2 (continued)

late early late early Miocene Miocene

Age Location

Platanaceae Platanus orientalis Platanus sp. Podocarpaceae Saxegothaea conspicua Potamogetonaceae Zannichellia palustris Potamogeton sp. Pteridaceae Pteris parschlugiana Ranunculaceae Clematis cf. vitalba Rhamnaceae Rhamnus sp. “Rhamnus” warthae Rhamnus cf. decheni cf. Frangula almus

Problematic taxa BLD/BLE/Azonal woody BLD BLD

1 0.33/0.33/0.33 1 1

Azonal woody

1

BLD/Azonal woody BLD/Azonal woody

0.5/0.5 0.5/0.5

Zonal arboreal ferns

1

Problematic taxa

1

CONİF CONİF CONİF CONİF CONİF CONİF CONİF CONİF CONİF CONIF Azonal woody CONIF CONİF Azonal woody Azonal woody Azonal woody Azonal non woody elements

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BLD/Azonal woody BLD/Azonal woody

0.5/0.5 0.5/0.5

Problematic taxa

1

Problematic taxa Aquatic

1 1

Zonal arboreal fern

1

Problematic taxa

1

BLD/Azonal woody BLD/Azonal woody Problematic taxa BLD/Azonal woody

0.5/0.5 0.5/0.5 1 0.5/0.5

AnkaraGüvem

late early-early middle Miocene

late early-early middle Miocene (Langhian-early middle Serravallian) Miocene

AnkaraMilasBeşkonak Manisa-Soma Karacaağaç-Hüssamlar İzmir-Tire

middle Miocene (early-middle Serravallian)

early middle Miocene

late middle Miocene (early-middle late middle Serravallian) Miocene

Afyon-Dumlupınar Kütahyaand İkiz Dere Aydın-Şahinali Uşak-İlyaslı Tunçbilek

ÇanakkaleÇan-Demirci

* * * *

*

*

* * * *

*

* *

* * * * * *

* *

* * * * *

* * *

*

*

*

*

*

* * * * *

*

* * *

*

* *

* * *

* * * *

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Myrica cf. salicina Myrica sp. Comptonia acutiloba Comptonia sp. Nyssaceae Nyssa bilinica Oleaceae Fraxinus excelsifolia Fraxinus sp. Osmundaceae Osmunda cf. lignitum Palmea cf. Chamaedorea Pinaceae Cedrus sp. Pinus canariensis Pinus leucodermis Pinus massoniana Pinus palaeostrobus Pinus pinastroides Pinus pinaster Pinus aff. morrisonicola Pinus sp. Picea sp. Sequoia langsdorfii Tsuga sp. cf. Pseudotsuga Taxodium dubium Taxodium miocenicum Taxodium distichum Taxodium sp.

Vegetational groups and percentage (Kovar-Eder et al., 2006)

late early-early middle Miocene

Paliurus sp. Ziziphus ziziphoides Ziziphus sp. Rosaceae Crataegus sp. Sorbus aucuparia Sorbus aff. aucuparia Sibiraea sp. ? Rosaceae

Sciadopityaceae Sciadopitys tertiaria Symplocaceae cf. Symplocos sp. Tiliaceae Tilia platyphyllos Tilia aff. platyphyllos Tilia sp. Typhaceae Typha sp. Ulmaceae Ulmus carpinoides Ulmus longifolia

1 1 1

*

BLD BLD/Azonal woody Problematic taxa Problematic taxa BLD/BLE/SCL/M-HERB/ D-HERB

1 0.9/0.1 1 * 1 0.2/0.2/0.2/0.2/0.2/0.2

* *

BLD

1

*

BLD/Azonal woody Problematic taxa Azonal woody Problematic taxa BLD/Azonal woody BLD/Azonal woody Azonal woody BLD/Azonal woody Azonal woody Azonal woody Azonal woody Azonal woody Azonal woody

0.5/0.5 1 1 1 0.5/0.5 0.5/0.5 1 0.5/0.5 1 1 1 1 1

Aquatic

1

*

BLD/BLE BLD/BLE/SCL

0.5/0.5 0.2/0.6/0.2

*

Problematic taxa Problematic taxa BLE/SCL

1 1 0.5/0.5

* *

BLD

1

*

BLE

1

*

Azonal non-woody elements Azonal non-woody elements

1

CONİF/Azonal woody

0.5/0.5

BLD/BLE/Azonal woody

0.2/0.6/0.2

BLD BLD BLD

1 1 1

*

Azonal non woody elements

1

*

BLD/Azonal woody BLD/Azonal woody

0.5/0.5 0.5/0.5

* *

* *

*

*

* *

*

* * *

* * *

* * * * *

* *

*

*

* *

*

*

*

*

*

1

*

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Rutaceae Ptelea sp. Salicaceae Populus balsamoides Populus euphratica Populus latior Populus mutabilis Populus populina Populus tremula Populus cf. latior Populus sp. Salix angusta Salix varians Salix longa Salix haidingeri Salix sp. Salviniaceae Salvinia natans Sapindaceae Sapindus falcifolius Sapindus sp. Sapotaceae Bumelia florissanti Bumelia sp. Sideroxylon sp. Simaroubaceae Ailanthus aff. altissima Smilacaceae Smilax aspera Scheuchzeriaceae Glumophyllum cf. oeningense Glumophyllum sp.

BLD SCL SCL

* * * * *

*

*

* * 47

(continued on next page)

48

late early late early Miocene Miocene

Age Location Ulmus sp. Zelkova ungeri Zelkova zelkovifolia Vitaceae Vitis teutonica Monocotyledone indetermine Antholithes Gleditschia wesseli Naias Periploca sp. Phoenicites sp.

Salinia Incertae sedis

late early-early middle Miocene

late early-early middle Miocene

late early-early middle Miocene (Langhian-early middle Serravallian) Miocene

Vegetational groups and percentage (Kovar-Eder et al., 2006)

AnkaraGüvem

AnkaraMilasBeşkonak Manisa-Soma Karacaağaç-Hüssamlar İzmir-Tire

BLD/SCL/Azonal woody BLD/SCL/Azonal woody BLD/Azonal woody

0.33/0.33/0.33 0.33/0.33/0.33 0.5/0.5

* *

* *

BLD/Azonal woody Problematic taxa

0.5/0.5 1

* *

Problematic taxa LEG Problematic taxa Problematic taxa Zonal arboreal palm/azonal non woody elements Problematic taxa Problematic taxa

1 1 1 1 0.5/0.5

* * *

1

*

middle Miocene (early-middle Serravallian)

early middle Miocene

late middle Miocene (early-middle late middle Serravallian) Miocene

Afyon-Dumlupınar Kütahyaand İkiz Dere Aydın-Şahinali Uşak-İlyaslı Tunçbilek

* *

* *

*

ÇanakkaleÇan-Demirci

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Table 2 (continued)

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

49

Table 3 Zonal vegetation types, as defined by percent of various components of angiosperm taxa (Kovar-Eder et al., 2008; Teodoridis et al., 2011). Vegetation type

Broad-leaved deciduous forests “BLDF” Ecotone “BLDF”/“MMF” Mixed mesophytic forests “MMF” Ecotone “MMF”/“BLEF” Broad-leaved evergreen forests “BLEF” Subhumid sclerophyllous forests “ShSf” Xeric open woodlands Xeric grasslands or steppe

Zonal woody components

Zonal herbaceous components

BLD

BLE

SCl + LEG

MESO + DRY HERB

N80% 75–80% b75%

b30%

b20%

≤30% b30%

30–40% N40% b30% b30%

similar to those of their NLRs (e.g. Mosbrugger and Utescher, 1997; Mosbrugger, 1999; Utescher et al., 2014). This method reconstructs palaeoclimatic parameters for a given fossil flora using climatic intervals in which a maximum number of the NLRs of the fossil flora could coexist (Mosbrugger and Utescher, 1997; Mosbrugger, 1999). To facilitate the quantitative analysis, Mosbrugger and Utescher (1997) have developed a database, PALAEOFLORA, which contains N 4000 Cenozoic plant taxa. Climatic intervals were calculated by the ClimStat program. In the present study the mean annual temperature (MAT), cold month mean temperature (CMT), warm month mean temperature (WMT) and mean annual precipitation (MAP), are analyzed and discussed. 3. Results In this study, the IPR-vegetation analysis method has been used for the zonal vegetational interpretation of the late Oligocene (Fig. 1; Tables 1 and 4), late early-early middle Miocene, late middle Miocene, late Miocene and Pliocene-early Pleistocene (Fig. 1; Tables 1, 5, 6, 7 and 8) based on the macro-microfloras of Anatolia. A summary on the microflora of Anatolia was published in two detailed studies namely in Akgün et al. (2007) and Kayseri-Özer (2014). However, Anatolian macrofloral contents of the published studies have previously been defined and are just summarized in this study. 3.1. IPR analysis of the macrofloral record Forty-four taxa of the macroflora from the Manisa-Soma region in Western Anatolia were used in the IPR analysis (Fig. 1 and Table 1). The late Burdigalian-early Serravallian flora of this region (Nebert, 1978; Gemici et al., 1991) are commonly composed of evergreen forest elements (e.g. Cinnamophyllum, Laurophyllum). Deciduous forest elements are accessorily observed in the Manisa-Soma flora and these forest elements include Carpinus, Fagus, Carya cf. minor, Quercus, Zelkova and Acer. The coniferous forest elements and azonal woody elements are represented by Pinus sp., Glyptostrobus, Seguoia, Taxodium and Myrica, Salix. Additionally, some plants (e.g. Buxus, Pistacia, Comptonia and Apocyanophyllum) are less abundantly preserved in the flora (Tables 1 and 2). The Ankara-Güvem and Beşkonak floras (Central Anatolia) are described in Paicheler and Blanc (1978) and Kasaplıgil (1976) (Fig. 1; Table 1). One hundred taxa of the late early Miocene floras from Ankara-Güvem and Beşkonak in Central Anatolia are used for palaeovegetational interpretation based on the IPR analysis method, and these floras are characterized by a high abundance of deciduous forest elements (e.g. Acer, Carpinus, Ulmus, Zelkova, Cercidiphyllum, Betula, Platcarya, Liquidambar, Tilia, Alnus and Juglans sp., Table 1). Oaks are dominant in the Ankara Güvem and Beşkonak macroflora. The coniferous and evergreen forest elements of these floras include Pinus, Picea, Tsuga, Podacarpaceae, Sequoia, Cinnamomum and Quercus. The abundance of azonal woody elements characterized by Glyptostrobus, Myrica,

(SCL + LEG) b BLE ≥20% ≥20%

b25% b30% 30–40%; MESO HERB N DRYHERB up to 10% of all zonal herbs ≥40%

and species of the Aceraceae family is high in the Ankara-Güvem and Beşkonak floras. Aquatic plants are recorded in the floras of Ankara (Tables 1 and 2). The late early-middle Miocene flora described from İzmir-Tire in Western Anatolia is not diverse (Gemici et al., 1992), and 16 taxa are used for the palaeovegetational interpretation (Fig. 1 and Table 1). The İzmir-Tire macroflora is represented by Fraxinus, Pinus, Populus, Cornus, Buxus, Acer, Quercus, Typha, Sophora and Leguminosae. This flora commonly includes evergreen forest elements (cf. Quercus neriifolia, cf. Cassia sp.) (Tables 1 and 2). The north-south trending coal bearing Neogene basins in the Büyük Menderes Graben are located in both the northern and southern part of the Büyük Menderes River (Western Anatolia). These coal formations including leaf fossils are observed throughout the sedimentary sequence of the Aydın-Şahinali region at different levels, and this leaf flora was described by Gemici et al. (1992, 1993). The late middle Miocene flora (40 taxa; Table 1) from Aydın-Şahinali in Western Anatolia (Gemici et al., 1993) is characterized by abundant evergreen forest elements (Tables 1 and 2). The deciduous forest elements commonly are represented by Alnus and other elements of this forest (e.g. Quercus, Castanea). Azonal woody elements are not predominant in the Aydın-Şahinali flora. The coniferous forest elements only include Pinus. Mädler and Steffens (1979) described the macrofloras from Western and Central Anatolia (Fig. 1 and Tables 1 and 2). In this study, the Uşak-İlyaslı (14 taxa), Afyon-Dumlupınar-İkizdere, KütahyaTunçbilek-Tavşanlı-Alabarda (15 taxa), and Çanakkale-Çan-Demirci (18 taxa) floras are evaluated for palaeovegetation and palaeoclimate interpretations using the IPR analysis and the Coexistence Approach. The common species in the early middle Miocene Uşak-İlyaslı macroflora (14 taxa) of Western Anatolia (Mädler and Steffens, 1979; Ersoy et al., 2014) are Acer, a deciduous forest element, and Glyptostrobus, an azonal woody element (Tables 1 and 2). Alnus Taxodium, Quercus, Myrica, Pteris and Potamogeton are also identified in the Uşak-İlyaslı flora (Mädler and Steffens, 1979). Moreover, a leaf flora from the same region was described by Ercan et al. (1978), composed of Acer, Cinnamomophyllum, Osmunda, Myrica, Metasequoia, Glyptostrobus, Taxodium, Rhamnus, and Salix. The late middle Miocene flora (18 taxa) from Çanakkale-ÇanDemirci in Northwestern Anatolia is characterized by abundant Glyptostrobus, Diospyros, Cercidiphyllum, Liquidambar and Ulmus. This flora is commonly represented by deciduous forest elements (Tables 1 and 2). Rare elements are Acer, Rhus, Cercidiphyllum, Taxodium, Quercus, Persea, Myrica, and Sapindus (Mädler and Steffens, 1979). The middle Miocene flora from Afyon-Dumlupınar in Western Anatolia (Mädler and Steffens, 1979) includes abundant deciduous and evergreen forest elements (e.g. Fagus, Ulmus, Buxus and Leguminosites) (Tables 1 and 2).

50

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Table 4 Reconstructed vegetation and proportion of zonal components of the leaf assemblages from the late Oligocene for Anatolia. Vegetation BLDF: Broad leaved deciduous forest, MMF: mixed mesophytic forest, BLEF: broad leaved evergreen forest, SHSF: subhumid sclerophyllous forest (broad-leaved deciduous component (BLD), broad-leaved evergreen component (BLE), sclerophyllous component (SCL), legume-like component (LEG), dry herbaceous component (D-Herb), mesophytic herbaceous component (M-Herb), Percentage Zonal Herbs (D-Herb + M-Herb). Age

late Oligocene

Locations/References

Edirne (Batı, 1996)

Kırklareli (Batı, 1996)

Lüleburgaz (Batı, 1996)

Istanbul-Silivri (Batı, 1996)

Istanbul-Ağaçlı (Nakoman, 1968)

Istanbul-Büyükçekme (Batı, 1996)

Çanakkale-Tayfur (Akgün et al., 2013)

50.73

22.89

37.33

37.33

48.98

34.71

58.87

36.75

22.62

22.77

22.77

30.11

17.15

25.33

2.82

0

5.65

5.65

2.32

6.82

12.58

7.49

14.23

0.8

14.95

0

13.95

11.64

0

2.73

0

4.98

0

6.97

6.01

7.49

11.5

0.8

9.96

0

6.97

5.63

Ecotone between MMF and BLEF

MMF

MMF

MMF

Ecotone between MMF and BLEF

MMF

MMF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

The Kütahya-Tunçbilek macroflora from the late middle Miocene strata in Western Anatolia (Mädler and Steffens, 1979) is characterized by common deciduous forest elements (e.g. Diospyros, Fagus) (Tables 1 and 2). This flora is predominatly represented by azonal woody elements (e.g. Taxodium, Glyptostrobus, and Myrica). Coniferous forest consists only of Pinus and Sciadopitys. The evergreen forest elements include species of the Lauraceae family. The Karacaağaç and Hüssamlar floras from the Milas-Ören region in Southwestern Anatolia (Kayseri, 2010; Kayseri-Özer et al., 2014a, 2014b), comprise 29 taxa used for palaeovegetation reconstruction based on the IPR analysis (Table 1). The Karacaağaç flora is characterized by the dominance of Acer, Fagus, and Quercus with Pinus, Glyptostrobus, Carpinus, Alnus, Myrica, Nyssa, Rhamnus, Populus and Zelkova being common elements and, rare Taxodium, Liquidambar, Berberis, Mahonia, Betula, Hamamelis and Daphnogene (Tables 1 and 2). The Hüssamlar flora is represented by abundant Daphnogene, common Fagus and rare Carpinus, Alnus, Quercus and Myrica. The presence of two groups of vegetation is evident from these fossil floras. The first group comprises azonal vegetation characterized by swamp and riparian forests (Glyptostrobus, Myrica, Liquidambar and Alnus) which surrounded a water body, probably a lake with swampy shores. The other group is made up of zonal vegetation represented by taxa characteristic of mesophytic forest (Fagus, Betula, Zelkova and Acer) which probably grew in nearby elevated areas (Kayseri, 2010). The percentage of deciduous forest elements is high, and these forest elements are commonly represented by species of the Aceraceae family, Fagus, Carpinus and Rhamnus. 3.2. Regional and stratigraphic range of the vegetation types based on the IPR analysis of macro-microfloras 3.2.1. Broad-leaved deciduous forests Four floras are assigned to broad-leaved deciduous forests and the ecotone between the broad-leaved deciduous and mixed mesophytic forests: two are from the late early-early middle Miocene of Western and Central Anatolia (Ankara-Beypazarı and Aydın-Kuloğulları) (Table 6), one from the late middle-early late Miocene of Western Anatolia (Aydın-Köşk upper coal mine in Büyük Menderes Graben) (Table 7), and one from the late middle Miocene of Central Anatolia (KırşehirAvcıköy) (Table 8). The percentage of the BLD components is high,

and these percentages are between 71.12 and 78.28% (Tables 6, 7 and 8). The percentages of the BLE components vary from the 15.54 to 25.28%. The abundance of the zonal herbaceous components was significantly low in this forest. 3.2.2. Mixed mesophytic forests Twenty-nine floras including leaf and pollen assemblages reconstructed as mixed mesophytic forests: ten from the late Oligocene of Western, Central, and Northwestern Anatolia (Denizli-KaleTavas-Sağdere and Çaykavuştu, Denizli-Tokça, Muğla-Alatepe, Çorum-Güvendik, Çanakkale-Tayfur, Kırklareli, Lüleburgaz, İstanbul-Silivri, Büyükçekmece; Table 4), ten from the late early-early middle Miocene interval of Central, Northwestern, and Western Anatolia (Ankara-Beşkonak, Güvem, Muğla-Karacaağaç-Hüssamlar, Isparta-Yukarıkaşıkara, Yarıkkaya, İzmir-Kemalpaşa-Dereköy and Yeniköy, Manisa-Soma (microflora), Çanakkale-Çan (microflora) and Ankara-Hırkatepe, Tables 5 and 6), three from the late middle Miocene of Western and Northwestern Anatolia (Çanakkale-Çan (macroflora) and Aydın-Söke and Şahinali (microflora) in the Büyük Menderes Graben; Tables 5 and 7), three from the late middle Miocene of Central Anatolia (Uşak-İlyaslı, Yozgat-Çiçekdağ and Çamoluk; Table 8), one from the late middle-early late Miocene of Western Anatolia (Aydın-Sazak in Büyük Menderes Graben; Table 7), one from the latest middle Miocene-earliest late Miocene interval of Central Anatolia (Nevşehir-Tuzköy; Table 8), and one from the middle-late Pliocene of Bingöl-Halifan in Eastern Anatolia. The percentages of the BLD and BLE components of the late Oligocene are 22.89–63.13% and 22.62–29.85% (Table 4). In the Mio-Pliocene time interval, percentages of the BLD and BLE components vary (values of the BLD between 72.21 and 55.27% and values of the BLE 13.58 and 29.82%; Tables 5, 6, 7 and 8). Thirty-one floras are reconstructed as ecotone between the mixed mesophytic and broad-leaved evergreen forests: three are from the late Oligocene of Western and Northwestern Anatolia (Edirne, İstanbul-Ağaçlı and Denizli-Kale-Tavas-Mortuma; Table 4), eight from the late early-early middle Miocene interval of Central, Southwestern and Western Anatolia (Balıkesir-Bigadiç and Gönen, Ankara-Çayırhan, Aydın-Başçayır in Büyük Menderes Graben, Muğla-Karacaağaç, Hüssamlar, Samsun-Havza, Eskişehir-Koyunağılı; Table 6), three from the late middle Miocene of Western and Northwestern Anatolia

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

51

Table 4 Reconstructed vegetation and proportion of zonal components of the leaf assemblages from the late Oligocene for Anatolia. Vegetation BLDF: Broad leaved deciduous forest, MMF: mixed mesophytic forest, BLEF: broad leaved evergreen forest, SHSF: subhumid sclerophyllous forest (broad-leaved deciduous component (BLD), broad-leaved evergreen component (BLE), sclerophyllous component (SCL), legume-like component (LEG), dry herbaceous component (D-Herb), mesophytic herbaceous component (M-Herb), Percentage Zonal Herbs (D-Herb + M-Herb).

Çorum-Güvendik Muğla-Alatepe Denizli-Tokça Denizli-Kale-Tavas-Sağdere Denizli-Kale-Tavas-Çaykavuştu Denizli-Kale-Tavas-Karadere Denizli-Kale-Tavas-Mortuma (Akgün and Sözbilir, 2001) (Akgün and Sözbilir, 2001) (Akgün and Sözbilir, 2001) (Akgün and Sözbilir, 2001) (Akkiraz (Kayseri, (Kayseri et al., et al., 2010) 2010) 2017 55.94

61.24

61.46

63.13

50.23

40.34

50.77

28.64

29.85

26.84

18.99

26.73

40.19

36.07

12.93

4.24

7.57

1.02

0

3.89

2.96

15.57

4.33

4.35

0.42

0

0

5.3

9.47

0

2.05

0

0

0

0

6.1

4.66

2.29

0.42

0

0

5.3

MMF

MMF

MMF

MMF

MMF

BLEF

Ecotone between MMF and BLEF

(Çanakkale-Çan (macroflora) and Aydın-Söke and Şahinali in Büyük Menderes Graben; Tables 5 and 7), seventeen from the late middle Miocene of central and Western Anatolia (Aydın-Şahinali (macroflora); Kütahya-Tunçbilek, Aydın-Kızılcayer, Aydın-İncirliova, Hasköy, Köşk upper coal mine, Manisa-Çıtak, İzmir-Kemalpaşa-Dereköy and Yeniköy, Çorum-Alıcık, Ayva, Evlik, İkizler, İncesu, Kumbaba, Kırşehir-Kızılöz, Konya-Ilgın; Tables 5, 7 and 8), one from the late middle-early late Miocene of Western Anatolia (Aydın-Hasköy upper coal mine in Büyük Menderes Graben; Table 7), and two from the late Miocene and early late Miocene of Sivas-Hafik and İskenderun-Kızlargözü in Eastern and Southern Anatolia (Table 8). The percentages of the BLE components are 39.19 and 30.11% in Table 4. Percentages of the SCL + LEG and zonal herb components are between 2 and 3% and 0–28.80%, respectively. Percentages of the BLD components vary between 53 and 66%. Percentages of the BLE components attained 64.22 to 36.22% (Tables 6 and 8).

3.2.3. Broad-leaved evergreen forests Eleven floras are reconstructed as broad-leaved evergreen forests. One is from the late Oligocene of Denzili-Kale-Tavas-Karadere in Western Anatolia (Table 4), four are from the late early-early late Miocene of Aydın-Başçayır, Ilıdağ and Kızılcayer and Muğla-Kultak (Table 6), four from the late middle Miocene of Afyon-Dumlupınar, Çorum-Dodurga, İskilip and Zambal (Tables 5 and 8) and two from the late middleearly late Miocene of Sivas-Yeniçubuk-Akalın and Vasıltepe. They are represented by pollen and leaf assemblages. The percentage of the BLE components in these assemblages varies ranging from 52.00 to 40.19%. The percentage of the herbaceous components varies, however, percentages of the components are low (0–4%).

3.2.4. Subhumid sclerophyllous forests Five locations represented both by leaf and pollen assemblages are reconstructed as subhumid sclerophyllous forests: two are from the late early-early middle Miocene of Manisa-Soma (macroflora) and İzmir-Tire in Western Anatolia (Table 5), two from the late middleearly late Miocene of Ankara-Beynam and Sivas-Yeniçubuk-Karagöl in central and Eastern Anatolia (Tables 5 and 8), and one from the early Pliocene of Denizli-Karacaören in Western Anatolia (Table 7). The

percentage of the SCL + LEG components varied from 41.4 to 22.65% (Tables 5, 7 and 8). 3.2.5. Open woodlands Four pollen floras are reconstructed as open woodlands: two are from the late Miocene of İskenderun-Hacıahmetli and Elazığ in southern and Eastern Anatolia (Table 8) and two from Kırıkkale-Balışeyh and Denizli-Ericek of the early Pliocene in Western and Central Anatolia. The percentages of the zonal herb components are between 33.55 and 31.31% and the percentages of the SCL + LEG components vary between 23.97 and 35.25% (Tables 7 and 8). 3.2.6. Xeric grasslands Four floras are reconstructed as xeric grasslands: one from the late late Miocene of the Kırıkkale-Balışeyh in Central Anatolia, one from the middle-late Pliocene of Erzurum-Horosan in Central Anatolia, and two from the latest Pliocene-early Pleistocene (Gelasian) of Denizli-Dandalas and Bıçakçı in Western Anatolia. Percentages of the zonal herb components are between 44.27 and 40.71% (Tables 7 and 8). 3.3. Palaeoclimate data The palynofloras of the Miocene were described by Kayseri-Özer (2014) and Kayseri-Özer et al. (2016). In this study, five palynoflora of the Pliocene and two of the Messinian which were recorded from the Afyon-Akçaköy, Kahramanmaraş-Elbistan, Nevşehir-Güzelöz, Erzurum-Horosan, Bingöl-Halifan, İskenderun-Hacıahmetli and Kızlargözü regions in Anatolia (Nakoman, 1968; Benda and Muelenkamp, 1990; Ediger et al., 1996; Çetmen, 2003; Yavuz-Işık and Toprak, 2010; Yavuz–Işık et al., 2011; Kayseri-Özer, 2014) are first used for palaeoclimatic interpretataion from the late Miocene to Pliocene of Anatolia (Table 1). Climatic intervals of the early Pliocene Afyon-Akçaköy palynoflora 15.7 (Mastixiaceae)–16.6 °C (Sciadopitys) for MAT, (− 0.3) (Cedrus sp.)–1.1 °C (Pinus sylvestris) for CMT, 21.7 (Pterocarya sp.)–27.8 °C (Sciadopitys) for WMT and 1300 (Sciadopitys)–1355 mm (Carpinus) for MAP (Tables 1 and 9).

SHSF Ecotone between MMF and BLEF BLEF MMF

MMF

Ecotone between MMF MMF and BLEF

11.99 0 0 7.69 0

0

0

11.99 18.18 0 7.69 0

0

0

23.98 18.18 0 15.38 0

0

0

26.18 0 10.56 14.29 19.44

14.29

13.8

0 33.33 24.58 42.86 13.58

14.29

37.58

73.82 66.67 64.86 48.62 42.86 71.43 66.98

The MAT of the early Pliocene Kahramanmaraş-Elbistan palynoflora ranges from 16.5 to 17.2 °C and is determined by Cycadaceae and Juglans. The CMT coexistence interval ranges mainly between 0.1 °C (Myrtaceae) and 1.1 °C (Pinus sylvestris), and 5.5 °C (Cycadaceae) and 7.0 °C (Juglans) According to Cycadaceae and Juglans the coexistence interval for the WMT is 27.3–27.7 °C. The MAP coexistence intervals are between 887 and 1520 mm on the basis of Cycadaceae and Taxodiaceae (Tables 1 and 9). The quantitative palaeoclimate data of the early-middle Pliocene Nevşehir-Güzelöz palynoflora are between 10.0 °C (Olea sp.) and 21.1 °C (Carpinus sp.) for the MAT, (− 6.5) °C (Pterocarya sp.) and 16.3 °C (Carpinus sp.) for the CMT, 21.7 °C (Pterocarya sp.) and 28.3 °C (Quercus sp.) for the WMT, 735 mm (Carpinus sp.)–1355 mm (Carpinus sp.) for the MAP (Tables 1 and 9). Quantitative results of the middle-late Pliocene Bingöl-Halifan palynoflora indicate that the values for the MAT are between 13.3 °C (Taxodium) and 18.4 °C (Cedrus sp.), 1.7 °C (Podocarpus)–12.5 °C (Cedrus sp.) for the CMT, 23.6 °C (Sapotaceae)–28.3 °C (Quercus sp.) for the WMT, 897 mm (Cyrillaceae)–1577 mm (Liquidambar) for the MAP (Tables 1 and 9). The CA values of the middle-late Pliocene Erzurum-Horosan palynoflora are an MAT of between 13.3 °C (Taxodium)–21.3 °C (Liquidambar), a CMT of −0.1 °C (Taxodium)–16.3 °C (Liquidambar), the WMT 19.6 °C (Liquidambar)–28.6 °C (Liquidambar) and an MAP 897 mm (Liquidambar)–1613 mm (Liquidambar) (Tables 1 and 9). The coexistence intervals calculated for the latest Tortonianearliest Messinian from the İskenderun-Hacıahmetli and Kızlargözü regions are as follows. Quantitative results of Hacıahmetli are 15.7 °C (Mastixiaceae)–23.9 °C (Nyssa sp.) for the MAT, 9.6 °C (Mastixiaceae)–17.0 °C (Pterocarya sp.) for the CMT, 23.6 °C (Sapotaceae)–27.9 °C (Nyssa sp.) for the WMT and 803.0 mm (Cyrillaceae)–932.0 mm (Ephedra sp.) for the MAP (Tables 1 and 9). The CA values of the Kızlargözü region are an MAT of 17.2 °C (Phoenix sp.)–21.9 °C (Tsuga sp.), a CMT of 10.0 °C (Phoenix sp.)–15.6 °C (Tsuga sp.), a WMT 23.6 °C (Symplocos sp.)– 27.9 °C (Nyssa sp.) and an MAP of 803 mm (Cyrillaceae)–932 mm (Ephedra sp.) (Tables 1 and 9). 4. Discussion

0

1.25

1.23

SHSH

3.77

0

MMF

0.95

3.47

MMF

SHSF

0

2.48 3.77 4.41

0

22.65 14.78 12.81

28.95

33.51 17.25 16.5

28.95

43.84 67.96 69.31

42.11

4.1. Vegetation changes in Anatolia

Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

middle-late middle Miocene late early-early middle Miocene

(Leaf fossil) Ankara-Beşkonak Ankara-Güvem Manisa-Soma Izmir-Tire Milas- Karacaağaç-Hüssamalar Uşak- İlyaslı Afyon-Dumlupinar Aydın-Şahinali locations/references IPR analysis parameters

Age

Table 5 Reconstructed vegetation and proportion of zonal components of the leaf assemblages from the late early to late Middle Miocene for Anatolia (for explanation of abbreviations see Table 4).

early late Miocene

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Çanakkale-Çan Kütahya-Tunçbilek Ankara-Beynam

52

Generally, the IPR-vegetation analysis results show that sporomorph assemblages tend to reconstruct higher proportions of herbaceous components, whereas leaf assemblages tend to reconstruct higher proportions of woody components (Tables 4, 5, 6, 7 and 8). This effect was also recorded by Kovar-Eder and Kvaček (2007) and Jacques et al. (2011). According to Kovar-Eder and Kvaček (2007), herbaceous plants (except for seeds of herb species) cannot be preserved and fossilized in macrofloras for taphonomic reasons. 4.1.1. Late Oligocene (Figs. 2 and 3) Palaeovegetation in Northwestern Anatolia (Thrace region) and Southwestern Anatolia was represented by mixed mesophytic forests. However, two regions (Edirne, İstanbul-Ağaçlı) in the Thrace region of Northwestern Anatolia, Denizli-Kale-Tavas-Mortuma and the Karadere region in Southwestern Anatolia were represented by an ecotone between mixed mesophytic forests and broad-leaved evergreen forests, and broad-leaved evergreen forests, respectively (Table 4). The percentages of the BLD components were within an average value of 30–60% in the Thrace region, except for Kırıkkale (22%), and the percentages of these components were higher in Northwestern Anatolia compared to Southwestern Anatolia in the late Oligocene (Figs. 2 and 3). Generally, percentages of the BLE components are between 20 and 35%, and high values of the BLE were recorded in Edirne and Denizli-Tavas (Fig. 2B;

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

53

Table 6 Reconstructed vegetation and proportion of zonal components of the pollen assemblages from the late early to early middle Miocene for Anatolia (for explanation of abbreviations see Table 4). late early-early middle Miocene

Age Locations/References

İzmir-Kemalpaşa (Dereköy area) (Kayseri et al., 2014a, 2014b)

İzmir-Kemalpaşa (Yeniköy area) (Kayseri et al., 2014a, 2014b)

Aydın-Kuloğulları (Akgün and Akyol, 1999)

Aydın-Başçayır (Akgün and Akyol, 1999)

Aydın-Başçayır (Kayseri-Özer and Emre, 2013)

Aydın-Ilidağ (Kayseri-Özer and Emre, 2013)

Aydın- Kızılcayer (Kayseri-Özer and Emre, 2013)

68.32

55.27

75.28

46.02

57.99

44

52.2

27.25

28.67

20.4

47.48

37.94

52

43.58

4.43

9.17

4.32

6.49

4.07

4

4.22

13.17

6.54

6.81

10.25

11.11

18.52

7.76

6.61

2.89

4.03

6.06

6.88

12.76

5.17

6.56

3.65

2.78

4.19

4.23

5.76

2.59

MMF

MMF

BLDF

BLEF

Ecotone between MMF and BLEF

BLEF

BLEF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

Age

late early-early middle Miocene

Locations/references

Manisa-Soma (Akgün et al., 1986)

Balikesir-Bigadiç (Akyol and Akgün, 1990)

Balikesir-Gönen (Ediger, 1990)

Çanakkale-Çan (Ediger, 1990)

Muğla-Kultak (Kayseri et al., 2014a, 2014b)

Muğla-Karacaağaç (Kayseri et al., 2014a, 2014b)

Muğla-Hüssamlar (Kayseri et al., 2014a, 2014b)

60.33

63.35

43.47

68.7

47.99

51.63

36.22

26.62

31.49

34.17

19.12

40.73

31.57

39.06

6.78

5.16

4.47

12.18

5.35

4.93

0

6.65

5.79

9.44

7.89

2.34

12.09

10.28

3.93

3.43

9.44

5.26

1.19

8.1

7.98

2.72

2.37

0

2.63

1.15

3.99

2.3

MMF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

MMF

BLEF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

Age

late early-early middle Miocene

early middle Miocene

Locations/references

Isparta-Yarikkaya Isparta-Yukarikaşikara Ankara Ça (Akgün and Akyol, 1992) (Akgün and Akyol, 1992) yırhan

Ankara Hirkatepe

Ankara Beypazarı (Güngör, 1991)

Eskişehir Samsun-Havza Koyunağili (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

69.44

72.21

58.86

64.24

71.12

61.55

55.68

25.73

22.4

36.66

29.82

25.28

32.15

39.17

4.84

5.39

4.49

5.94

3.6

6.29

5.15

12.34

13.69

0

0

3.6

7.44

5.17

6.97

10.41

0

0

2.4

3.95

3.45

5.38

3.28

0

0

1.2

3.48

1.72

MMF

MMF

Ecotone between MMF and BLEF

MMF

Ecotone between Ecotone between BLD and MMF MMF and BLEF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

Table 4). Percentages of the SCL + LEG components in Çanakkale-Tayfur and Çorum-Güvendik were higher than in other regions during the late Oligocene (12.58% and 12.93%) (Figs. 2C and 3), and the highest values of the zonal herb components were recorded in the samples of ÇorumGüvendik (Figs. 2D and 3).

Ecotone between MMF and BLEF

4.1.2. Late early Miocene-early middle Miocene (Figs. 4 and 5) The late early Miocene-early middle Miocene interval in Western and Central Anatolia was represented by mixed mesophytic and broad-leaved evergreen forests and an ecotone between these forests in general (Fig. 4E). However, broad-leaved deciduous and subhumid

54

Table 7 Reconstructed vegetation and proportion of zonal components of the pollen assemblages from the late middle Miocene, late middle Miocene-early late Miocene and Pliocene for western Anatolia (explanation of abbreviations see Table 4). Age

Locations/references IPR analysis parameters

İzmir-Kemalpaşa (Dereköy Aydın-Köşk Lower Aydın-Kızılcayer Area) (Kayseri et al., Coal Mine (Akgün Manisa-Akhisar (Çitak) (Kayseri-Özer and Aydın-Incirliova Aydın-Söke Aydın-Şahinali Aydın-Hasköy (Akgün and Akyol, 1987) 2014a, 2014b) Emre, 2013) (Akgün and Akyol, 1999) (Akgün and Akyol, 1999) (Akgün and Akyol, 1999) (Akgün and Akyol, 1999) and Akyol, 1999) 56.52

62.67

67.39

70.3

56.66

60.19

54.27

62.61

39.13

33.21

29.37

26.74

39.02

35.42

34.69

30.47

4.35

4.12

3.24

2.95

4.32

4.39

6.3

6.91

15.49

5.08

18.03

4.1

14.1

0.99

9.31

16.62

9.16

2.58

12.1

2.08

6.9

0

3.56

7.18

6.32

2.5

5.93

2.02

7.2

0.99

5.75

9.44

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

MMF

MMF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

latest Pliocene-earliest Pleistocene

early Pleistocene (late Gelacian)

Denizli-Karacaören Jimenez-Moreno et al. (2015)

Denizli-Dandalas Jimenez-Moreno et al. (2015)

Denizli-Biçakçi Jimenez-Moreno et al. (2015)

42.76

37.78

22.95

37.5

15.54

25.93

20.81

40.07

28.31

3.24

6.18

31.31

41.4

36.99

34.19

22.97

15.33

23.92

35.25

16.35

40.71

44.27

12.15

14.73

5.03

11.7

18.44

9.9

25.58

25.97

3.98

8.24

10.3

12.22

16.81

6.45

15.13

18.3

Ecotone between MMF and BLEF

MMF

Ecotone between MMF and BLEF

Ecotone between BLDF and MMF

xeric open woodland

SHSF

Zonal xeric grasslands or steppe

Zonal xeric grasslands or steppe

Age

late middle Miocene

latest middle-earliest late Miocene

early Pliocene

Locations/References

İzmir-Kemalpaşa (Yeniköy Area) (Kayseri et al., 2014a, 2014b)

Aydın-Sarayköy-Sazak (Akgün and Akyol, 1999)

Aydın-Hasköy Upper Coal Mine (Akgün and Akyol, 1999)

Aydın-Köşk Upper Coal Mine (Akgün and Akyol, 1999)

Denizli-Ericek Jimenez-Moreno et al. (2015)

58.59

66.07

57.56

78.28

34.14

29.72

39.19

7.27

4.21

16.13

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

late middle Miocene

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

55

Table 8 Reconstructed vegetation and proportion of zonal components of the pollen assemblages from the late middle Miocene, latest middle Miocene-earliest late Miocene, late Miocene and Pliocene for central Anatolia (for explanation of abbreviations see Table 4). Age Locations/References

late middle Miocene Çorum- Alıcık (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Ayva (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Kirşehir-Avciköy (Akgün et al., 1995)

Kirşehir-Kızılöz (Akgün et al., 1995)

Konya-Ilgın (Karayiğit et al., 1999)

Yozgat-Çiçekdağ (Akgün et al., 2002)

Yozgat-Çamoluk (Akgün et al., 2002)

54.48

56.76

78.28

64.22

53.66

67.37

70.32

36.42

33.53

15.54

30.78

33.97

28.42

24.74

4.13

4.4

6.18

5

6.42

4.22

4.93

16.19

8.88

13.84

24.92

5.74

17.14

17.9

9.64

4.72

8.19

13.66

3.4

13.01

9.54

6.55

4.16

5.65

11.26

2.35

4.13

8.36

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

Ecotone between BLDF and MMF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

MMF

MMF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

Age

late middle Miocene

Locations/References

Çorum-Dodurga (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Evlik (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Ikizler (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Incesu (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Iskilip (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Kumbaba (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Çorum-Zambal (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

38.04

57.3

63.06

61.21

39.4

62.13

45.49

47.62

32.04

30.79

33.54

48.48

33.6

46.29

7.44

6.24

6.14

5.24

5.5

4.26

8.22

16.09

6.69

12.81

15.37

11.69

10.83

12.2

5.53

1.94

7.32

10.51

4.32

3.02

8.86

10.56

5.02

5.49

4.87

7.37

7.81

3.33

BLEF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

Ecotone between MMF and BLEF

BLEF

Ecotone between MMF and BLEF

BLEF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

Age

latest middle-earliest late Miocene

late Miocene

Locations/References

Nevşehir-Tuzköy (Akgün et al., 1995)

Sivas-Yeniçubuk-Akalin (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Sivas-Yeniçubuk-Karagöl (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

Sivas-GemerekVasiltepe (Kayseri and Akgün, 2008; Kayseri-Özer, 2014)

IskenderunHaciahmetli (Ediger et al., 1996)

IskenderunKizlargözü (Ediger et al., 1996)

67.98

51.78

15.05

52.08

70.57

50.62

27.16

40.58

57.4

42.16

18.12

30.39

4.86

7.64

27.55

5.76

11.31

8.61

30.46

6.23

18.37

27.33

31.8

28.08

20.37

3.16

14.74

13.86

22.7

20.04

10.09

3.07

3.63

13.46

9.1

8.04

MMF

BLEF

SHSF

BLEF

Xeric Open Woodland

Ecotone between MMF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

(continued on next page)

56

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Table 8 (continued) Age

early late Miocene

late late Miocene

early Pliocene

middle-late Pliocene

middle-late Pliocene

Locations/References

Elaziğ Kayseri-Özer (2014)

Sivas-Hafik (Akgün et al., 2000)

Kirikkale-Balişeyh (Kayseri-Özer et al., 2017)

Kirikkale-Balişeyh (Kayseri-Özer et al., 2017)

Erzurum-Horosan

Bingol-Halifan (Nakoman, 1968)

65.24

48.96

58.09

53.7

61.11

63.8

28.38

34.54

21.6

22.33

21.94

29.18

6.38

7.48

20.31

23.97

16.96

7.02

32.85

27.33

44.03

33.55

42.79

8.87

22.25

18.31

25.73

17.46

27.44

4.5

10.6

9.02

18.31

16.09

15.33

4.37

Xeric Open Woodland

Ecotone between MMF and BLEF

Zonal xeric grasslands or steppe

Xeric Open Woodland

Zonal xeric grasslands or steppe

MMF

IPR analysis parameters Percentage BLD of zonal woody angiosperms Percentage BLE of zonal woody angiosperms Percentage SCL + LEG of zonal woody angiosperms Percentage Zonal Herb of zonal taxa Percentage of d-herb of zonal taxa Percentage of m-herb of zonal taxa Vegetation type

sclerophyllous forests were observed from some regions in western and central parts of Anatolia. Percentages of the BLD components (40–80%; Fig. 4A) were high during the late early Miocene-early middle Miocene interval in Anatolia. Also, values of the BLE componets were high. Percentages of the SCL + LEG and zonal herb components were low in Central Anatolia (Fig. 4C and D). However, the high abundance of the SCL + LEG components in some regions of Western Anatolia indicates the presence of subhumid sclerophyllous forests based on the leaf floral records (Tables 5 and 6), and this high abundance of the components would indicate dry palaeoenvironmental conditions in these regions. In general, humidity was prevalent in Anatolia due to low values of the SCL + LEG and zonal herb components, however, some regions in Western Anatolia (Milas, İzmir, Aydın and Isparta) were characterized by a high abundance of the D-Herb components (10–12%) indicating relative drought (Figs. 4 and 5 and Table 6).

4.1.3. Late middle Miocene-earliest late Miocene (Figs. 6 and 7) The late middle Miocene in Western Anatolia was generally represented by mixed mesophytic forests and an ecotone between the mixed mesophytic and evergreen forests (Figs. 6 and 7). Some regions in the study areas were characterized by broad-leaved evergreen forests and an ecotone between mixed mesophytic and broad-leaved deciduous forests (Fig. 6E). The mixed mesophytic forests and the ecotone between broad-leaved evergreen and mixed mesophytic forests in Western Anatolia were characterized by high values of the BLD components and moderately high values of the BLE components (20–40%) (Fig. 6A and B). Percentages of the SCL + LEG components (0–10%) were low in Western Anatolia (Fig. 6C). Values of the zonal herbaceous components (5–20%) were low and these herbaceous components were represented by the D-Herb components (Fig. 7). Furthermore, zonal herbaceous values were higher than the percentage of the SCL + LEG components in Western Anatolia (Figs. 6D and 7). Palaeovegetation of Central Anatolia in the late middle Miocene was dominated by broad-leaved evergreen forests, and an ecotone between mixed mesophytic and broad-leaved evergreen forests (Figs. 6 and 7). However, values of the broad-leaved evergreen forests in Central Anatolia were higher than the values obtained for Western Anatolia during the late middle Miocene (Tables 7 and 8). Moreover, an ecotone between mixed mesophytic and broad-leaved deciduous forests was recorded in the Kırşehir-Avcıköy region. Percentages of the BLD and BLE componenets were high in Western and Central Anatolia. However, percentages of the SCL + LEG components in Central Anatolia were relatively higher than the percentage obtained for western Anatolian floras (Figs 6C and 7).

During the middle-late Miocene transition, palaeovegetation types varied in central and southern Anatolia comprising mixed mesophytic, subhumid sclerophyllous, and broad-leaved evergreen forests and xeric open woodland (Fig. 6E). During this time interval, palaeovegetation in Western Anatolia was represented by mixed mesophytic forests, and an ecotone between mixed mesophytic and broadleaved evergreen forests. Also, an ecotone between the broad-leaved deciduous and mixed mesophytic forests was recorded in Western Anatolia (Fig. 6E and Table 7). Percentages of the BLD components of the middle-late Miocene transition were generally high (50–60%). Values of the BLE components at the middle-late Miocene transition were close to values of the late middle Miocene (Fig. 6B). The highest value of the BLE components was recorded in Sivas-Karagöl (57.40%) at the middle-late Miocene boundary (Table 8). The most significant difference between the late early-early middle Miocene to earliest late Miocene was the higher proportion of the zonal herb components in the younger stratigraphic units (Figs. 4D and 6D).

4.1.4. Early late Miocene-latest late Miocene and Pliocene (Figs. 6 and 8) The vegetation of the early late Miocene-latest late Miocene interval was characterized by xeric open woodland in Elazığ, an ecotone between mixed mesophytic and broad-leaved evergreen forests in the Sivas-Hafik region and zonal xeric grasslands at Kırıkkale-Balışeyh (Kayseri-Özer et al., 2017) (Figs. 6 and 8). The percentages of the zonal herb components increased during the late Miocene (Fig. 8; Tables 7 and 8). The Pliocene vegetation was represented by zonal xeric grasslands, xeric open woodlands, subhumid sclerophyllous and mixed mesophytic forests, and these forests were recorded from Western Anatolia (Denizli), Eastern Anatolia (Erzurum and Bingöl) and Central Anatolia (Kırıkkale-Balışeyh) (Kayseri-Özer et al., 2017). The percentage of the BLD components of the Pliocene coincides with high values reconstructed for Central and Eastern Anatolia (Kırıkkale-Balışeyh, Erzurum-Horosan and Bingöl-Halifan) (Table 8). However, the percentages of these components during the Pliocene were significantly lower in Western Anatolia (Denizli-Ericek, Karacaören, Dandalas and Bıçakçı) (Table 7). This difference could be interpreted by differing palaeotopographic conditions in Anatolia during the Pliocene. Thus in the Pliocene, the orographic elevation of Central and Eastern Anatolia could have been higher compared to Western Anatolia (e.g. Sancay, 2005; Sancay et al., 2006; Şengör et al., 2008). Based on the IPR analysis, the values of the SCL + LEG and zonal herb components clearly increased from the late Miocene to Pliocene (Figs. 6C, D and 8). This indicates a drying in the palaeoclimatic conditions and a consequence of the global cooling

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

which occurred during the Pliocene (Zachos et al., 2001 and Utescher et al., 2011). 4.2. Palaeoenvironment implications There is a clear link between vegetation and palaeoclimate (Wolfe, 1993, 1995; Mosbrugger and Utescher, 1997; Akgün et al., 2007; Jacques et al., 2011; Kayseri-Özer, 2014). These effects of the relationships between vegetation and climate are observed for the middle Eocene, late Oligocene and middle Miocene Climatic Optimum periods. 4.2.1. Late Oligocene In the late Oligocene, Zachos et al. (2001) recorded warm climatic conditions based on oxygen isotopic data of marine sediments. Warm climate conditions were also observed in terrestrial environments of Europe as recorded from the macro-micro floras (Utescher et al., 2009, 2011). Palynofloral records of the late Oligocene obtained from coal bearing sediments in Anatolia indicate warm climatic conditions similar to Europe (Kayseri-Özer, 2014) (Fig. 2). In this study, numerical climatic data were added to other calculated data from the late Oligocene pollen record of the Çankırı-Çorum Basin (Kayseri-Özer et al., 2017), and these data were located within previous calculated values (Fig. 9). The SCL + LEG components, as well as herbaceous components, were used to determine humidity, and the high abundances of these components indicate dry palaeoclimatic conditions (Kovar-Eder et al., 2008; Jacques et al., 2011). The values of the SCL + LEG components obtained for the late Oligocene were generally low, and this could be interpreted as humid climatic condition. The BLD and BLE components are indicators of cool and warm climatic conditions, respectively (Kovar-Eder et al., 2008; Jacques et al., 2011). Based on the low values of the BLD components, warm climatic conditions were recorded in the Thrace region, these differ from other late Oligocene localities in Anatolia. 4.2.2. Late early Miocene-Pliocene In the Langhian, humid and warm subtropical climatic conditions were recorded in most regions in Europe and Anatolia, based on palynological and palaeobotanical data (e.g. Akgün et al., 2007; Utescher et al., 2009; Bruch et al., 2004; Kayseri-Özer et al., 2014a, 2014b), and the late Burdigalian and early Langhian time interval was the warmest period in the Miocene (e.g. Zachos et al., 2001; Utescher et al., 2009). A trend towards cooler conditions occurred in the Serravallian and Tortonian as many thermophilous plants (the BLE components) disappeared reducing plant diversity in Europe (e.g. Bessedik, 1985; Jimenez-Moreno et al., 2010; Akgün et al., 2007). Furthermore, the mesothermic forest elements (mainly deciduous Quercus, Alnus, Carya, Fagus etc.) and high-elevation conifers increased in percentage during the SerravallianTortonian interval. This climatic cooling after the middle Miocene Climatic Optimum, which was recorded worldwide by Miller et al. (1991) and Zachos et al. (2001), caused these palaeovegetational changes. In the Messinian, during which the “salinity crisis” between 7.25 and 5.96 Ma was recorded all around the Mediterranean (e.g. Fauquette et al., 2006; Abrantes et al., 2012), marginal desiccation became common due to the presence of warm and dry palaeoclimatic conditions (Jimenez-Moreno et al., 2010; Bruch et al., 2011). According to palynological data of the Messinian in the Mediterranean, the influence of the salinity crisis was more effective in the Western Mediterranean Basin than the Eastern Mediterranean Basins (e.g. Bertini, 2006; Bertini and Martinetto, 2008, 2011; Gennari et al., 2013). In addition, wet, subtropical and temperate forest taxa dominated the north of the region of the Western Mediterranean Basin, whereas in the south, herbaceous taxa typical of dry open environments expanded (e.g. Bertini, 2006; Bertini and Martinetto, 2008, 2011). In Anatolia, the average MAT value for the Serravallian was 15 °C. At the same time, the CMT value of this time was between 5 and 6 °C, and this temperature interval was lower than the CMT values for the

57

Burdigalian-Langhian interval (9–12 °C; Akgün et al., 2007; Kayseri-Özer, 2014) (Fig. 9). In Western Anatolia, from the Burdigalian-Langhian to Serravallian, percentages of the BLD (e.g. mesophytic species: Carya, Alnus, Ulmus, deciduous Quercus, species of Pinaceae family and Fagus) and BLE (e.g. thermophilous species: Engelhardia, Sapotaceae, Schizaceae, Cyrillaceae) components had similar values, however percentages of the SCL + LEG and zonal herbaceous components increased during this period (Figs. 5 and 7; Tables 6 and 7). The observed effective terrestrial conditions in Western Anatolia (Kaya et al., 2007) due to tectonic activities and a decrease in palaeotemperatures in the terresterial areas (MAT, CMT, WMT) along with a decline in the MAP during the Burdigalian-Langhian time interval could have caused the high percentages of the BLD and SCL + LEG and zonal herbaceous components (Popov et al., 2004; Kayseri-Özer, 2014). The MAT and CMT values decreased throughout the SerravallianTortonian period and thereafter increased again in the middle Tortonian. Besides, the same climatic curve of the WMT values in this period was observed (Fig. 9). Furthermore, little increase in the MAP values was observed during this period. Although the lower boundaries of the MAP values for the early-middle Tortonian were low, based on palynological data from Central Anatolia (Kayseri-Özer, 2014), the humidity increased from the Serravallian to middle Tortonian Thus, due to the increasing humidity, swampy areas represented by Myricaceae and Taxodiaceae are recorded from the middle Tortonian (Sivas-Hafik, Akgün et al., 2000). These humid conditions are also evidenced by low proportions of the D-Herb components (D-Herb values of Sivas-Hafik: 18.31%; Table 8). According to the CA results, the CMT values reached maximum values at the Tortonian and Messinian boundary in Central and Eastern Anatolia (Fig. 9), thereafter, these values decreased significantly in the early Pliocene. This climatic trend is observed in the values of the MAT and WMT (Fig. 9). In addition, high abundances of the BLD components in the Messinian (58.09%) and Zanclean (53.70%) are recorded in Central Anatolia, and this indicates climate cooling at that time. The lowest humidity was recorded at the Messinian-Tortonian boundary, and then humidity distinctly increased towards the early Pliocene. At the same time, this increase was also supported by a decrease of the D-Herb values in Central Anatolia (Table 8). Thus, in the early Pliocene, the MAT, CMT and WMT values were lower than the values of the late Miocene in Anatolia. However, the MAP values were higher than those of the late Miocene. This increase in precipitation could indicate more humid conditions in the early Pliocene compared to the late Miocene (Fig. 9). According to palynological data, the Mediterranean climate during the early Pliocene was warmer and wetter than today (e.g. Fauquette et al., 1998, 1999; Jimenez-Moreno et al., 2010). For instance, in southern Italy, warm-water planktonic foraminiferal species were dominant during the early Pliocene and this supports the warming throughout the early Pliocene (Lourens et al., 1996). In the late Pliocene, the cooling of the palaeoclimate record is different from that of the early Pliocene (Lourens et al., 1996; Sprovieri et al., 2006). Pollen records from the Black Sea and northwest Mediterranean also reflect a clear change towards cooling in the Mediterranean vegetation during this later interval. This climatic change is recorded by a decline of subtropical plants which were partially replaced by herbs. Besides, the palaeotemperature of the late Pliocene is low but still relatively humid conditions are observed in the Mediterranean regions and these evidences support the climatic change from the early to late Pliocene (e.g. Fauquette et al., 1998; Popescu et al., 2010). This transitional period of cooling in the Pliocene was interrupted by the Mid-Pliocene warming (Abrantes et al., 2012; Dowsett et al., 2009; Utescher et al., 2009). Palynological data and numerical climatic values of the early and middle Pliocene are coherent with these estimates of a warmer (1–4 °C warmer) and more humid climate (400–700 mm higher annual rainfall) in the northern Mediterranean and a warmer climate than today (1–5 °C) in the southern Mediterranean (Fauquette et al., 1999; Utescher et al., 2009). Based on the palynological records obtained from the sediments in Anatolia,

58

Table 9 Published numerical climatic values (Kayseri-Özer, 2014) and new data of late Oligocene and late Miocene-Pliocene. Pollen

Location

middle-late Pliocene

Pollen

Turkey, Bingöl-Halifan

middle-late Pliocene early-middle Pliocene

Pollen Pollen

Turkey, Erzurum-Horosan Turkey-Nevşehir-Güzelöz

early Pliocene

Pollen

Turkey-Kahramanmaraş-Elbistan

early Pliocene

Pollen

Turkey-Kahramanmaraş-Elbistan

early Pliocene

Pollen

Turkey-Afyon-Akçaköy

early Pliocene latest late Miocene late Miocene

Pollen Pollen Pollen

Kırıkkale-Balışeyh Kırıkkale-Balışeyh İskenderun-Hacıahmetli

late Miocene

Pollen

İskenderun-Kızlargözü

late Miocene late Miocene

Pollen Pollen

Çankırı (Tuğlu Formation) Turkey, Sivas-Hafik

early late Miocene

Pollen

Turkey, Elazığ

late middle Mioceneearly late Miocene late middle Mioceneearly late Miocene late middle Miocene late middle Miocene late middle Miocene late middleMiocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene

Pollen

Turkey, Kırşehir-Tuzköy

Pollen

Turkey,Sivas-Vasıltepe

Pollen Turkey, Kırşehir-Avcıköy Pollen Turkey,Kırşehir-Kızılöz Pollen Turkey, Konya-Ilgın Pollen Turkey,Yozgat-Çiçekdağ Pollen Turkey,Sivas-Akalın Pollen Turkey,Sivas-Karagöl Pollen Turkey,Çorum-İncesu Pollen Turkey,Çorum-İkizler Pollen Turkey,Çorum-Evlik Pollen Turkey,Çorum-Dodurga Pollen Turkey,Çorum-Ayva Pollen Turkey,Çorum-Zambal Pollen Turkey,Çorum-Kumbaba Pollen Turkey,Çorum-Alıcık Pollen Turkey,Çorum-İskilip Pollen Turkey, Muğla-Yatağan-Sekköy Pollen Turkey,Akhisar-Citak

References (Kayseri-Özer, 2014)

MAT Taxa min

Average MAT

MAT max

CMT min

Average CMT

CMT max

WMT Average min WMT

WMT max Location

MAP min

Average MAP

MAP max

this study (Nakoman, 1968) This Study this study (Yavuz-Işık and Toprak, 2010) this study (Benda and Muelenkamp, 1990; Çetmen, 2003; Saraç, 2003) this study (Benda and Muelenkamp, 1990; Çetmen, 2003; Saraç, 2003) this study (Benda and Muelenkamp, 1990; Yavuz–Işık et al., 2011) Kayseri-Özer et al. (2017) this study (Ediger et al., 1996) this study (Ediger et al., 1996) Mazzini et al. (2013) Kayseri and Akgün (2008) Kayseri and Akgün (2008) Kayseri-Özer et al. (2014a, 2014b) Kayseri and Akgün (2008) Kayseri and Akgün (2008)

21

13.30

15.85

18.40

1.70

7.10

12.50

23.60 25.95

28.30

Turkey. Bingöl-Halifan

897.00

1237.00

1577.00

10 13

13.30 10.00

17.30 15.55

21.30 21.10

-0.10 -6.50

8.10 4.90

16.30 16.30

19.60 24.10 21.70 25.00

28.60 28.30

Turkey. Erzurum-Horosan Turkey-Nevşehir-Güzelöz

897.00 735.00

1255.00 1045.00

1613.00 1355.00

21

16.50

16.85

17.20

5.50

6.25

7.00

27.30 27.50

27.70

Turkey-Kahramanmaraş-Elbistan

887.00

1203.50

1520.00

21

16.50

16.85

17.20

0.10

0.60

1.10

27.30 27.50

27.70

Turkey-Kahramanmaraş-Elbistan

887.00

1203.50

1520.00

29

15.60

16.10

16.60

-0.30

0.40

1.10

21.70 24.75

27.80

Turkey-Afyon-Akçaköy

1300.00

1327.50

1355.00

27 26 21

12.90 17.00 15.70

13.45 17.30 19.80

14.00 17.60 23.90

0.90 6.20 9.60

2.30 7.95 13.30

3.70 9.70 17.00

23.60 23.95 23.60 24.85 23.60 25.75

24.30 26.10 27.90

Kırıkkale-Balışeyh Kırıkkale-Balışeyh Kırıkkale-Balışeyh

1300.00 803.00 1146.00

1368.50 867.50 1234.00

1437.00 932.00 1322.00

25

17.20

19.55

21.90

10.00 12.80

15.60

23.60 25.75

27.90

İskenderun-Hacıahmetli

803.00

867.50

932.00

x 18

13.80 16.50

15.40 18.65

17.00 20.80

x 5.50

x 10.55

x 15.60

x x 27.30 27.70

x 28.10

İskenderun-Kızlargözü Çankırı (Tuğlu Formation)

803.00 823.00

867.50 877.50

932.00 932.00

12

15.60

18.45

21.30

5.00

9.15

13.30

24.70 26.40

28.10

Turkey. Sivas-Hafik

887.00

1203.50

1520.00

16

13.50

17.15

20.80

1.80

7.55

13.30

25.40 26.75

28.10

Turkey. Elazığ

823.00

1198.50

1574.00

24

17.20

19.00

20.80

5.50

9.40

13.30

27.30 27.70

28.10

Turkey. Kırşehir-Tuzköy

1183.00

1269.00

1355.00

12 12 13 23 12 12 20 16 26 25 23 22 18 13 23 30 26

9.10 13.60 16.50 15.60 16.50 11.30 17.00 16.50 17.20 16.50 17.20 16.50 16.50 16.50 16.50 17.00 15.70

9.95 17.35 18.90 18.20 19.10 16.50 19.15 18.65 19.00 18.90 19.00 18.80 18.65 18.65 18.90 19.15 18.25

10.80 21.10 21.30 20.80 21.70 21.70 21.30 20.80 20.80 21.30 20.80 21.10 20.80 20.80 21.30 21.30 20.80

-2.70 1.80 5.50 5.00 5.50 0.10 6.20 5.50 7.70 7.70 5.50 5.50 5.50 7.70 5.50 6.20 1.80

-0.80 7.55 9.40 9.15 10.55 0.60 9.75 9.40 10.50 10.50 9.40 9.40 9.40 10.50 9.40 9.75 7.55

1.10 13.30 13.30 13.30 15.60 1.10 13.30 13.30 13.30 13.30 13.30 13.30 13.30 13.30 13.30 13.30 13.30

21.60 25.40 27.30 25.40 27.30 19.60 26.50 27.30 27.30 27.30 27.30 27.30 27.30 27.30 27.30 27.30 21.60

28.10 28.10 28.10 28.10 28.10 20.30 28.30 27.90 28.10 27.70 27.90 28.10 27.90 28.10 28.10 28.10 28.10

Turkey.Sivas-Vasiltepe Turkey. Kırşehir-Avcıköy Turkey.Kırşehir-Kızılöz Turkey. Konya-Ilgın Turkey.Yozgat-Çiçekdağ Turkey.Sivas-Akalın Turkey.Sivas-Karagöl Turkey.Çorum-İncesu Turkey.Çorum-İkizler Turkey.Çorum-Evlik Turkey.Çorum-Dodurga Turkey.Çorum-Ayva Turkey.Çorum-Zambal Turkey.Çorum-Kumbaba Turkey.Çorum-Alıcık Turkey.Çorum-İskilip Turkey. Muğla-Yatağan-Sekköy

1187.00 735.00 1183.00 1003.00 823.00 887.00 735.00 1146.00 887.00 1217.00 1122.00 1187.00 1122.00 887.00 887.00 1122.00 1146.00

1380.50 1045.00 1269.00 1261.50 1171.50 1230.50 1154.50 1234.00 1203.50 1269.50 1321.00 1271.00 1238.50 1121.00 1121.00 1321.00 1234.00

1574.00 1355.00 1355.00 1520.00 1520.00 1574.00 1574.00 1322.00 1520.00 1322.00 1520.00 1355.00 1355.00 1355.00 1355.00 1520.00 1322.00

Kayseri-Özer et al. (2014b)

24.85 26.75 27.70 26.75 27.70 19.95 27.40 27.60 27.70 27.50 27.60 27.70 27.60 27.70 27.70 27.70 24.85

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Age

Pollen Pollen Pollen Pollen Pollen Pollen Pollen Pollen

Turkey,Aydın-Söke Turkey,Aydın-Hasköy Turkey,Aydın-Köşk Turkey,Aydın-Şahinali Turkey,Aydın-İncirliova Turkey,İzmir-Kocaçay basin Turkey,İzmir-Cumaovası basin Turkey, Manisa-Soma

28 28 28 20 20 17 12 18

9.40 9.10 9.10 12.90 9.30 15.60 16.50 16.50

15.10 15.20 15.40 16.85 10.05 18.45 18.65 18.90

20.80 21.30 21.70 20.80 10.80 21.30 20.80 21.30

-0.10 -2.70 -2.70 -2.70 -2.70 5.00 5.50 4.80

6.60 -0.80 6.45 5.30 5.30 9.15 9.40 9.05

13.30 1.10 15.60 13.30 13.30 13.30 13.30 13.30

21.60 21.60 21.60 21.60 21.60 26.50 21.70 26.00

24.85 24.85 24.85 24.85 24.95 27.30 24.90 26.95

28.10 28.10 28.10 28.10 28.30 28.10 28.10 27.90

Turkey.Akhisar-Citak Turkey.Aydın-Söke Turkey.Aydın-Hasköy Turkey.Aydın-Köşk Turkey.Aydın-Şahinali Turkey.Aydın-İncirliova Turkey.İzmir-Kocaçay basin Turkey.İzmir-Cumaovası basin

735.00 735.00 473.00 735.00 735.00 735.00 1122.00 735.00

1127.50 1127.50 996.50 1127.50 1127.50 1127.50 1321.00 1154.50

1520.00 1520.00 1520.00 1520.00 1520.00 1520.00 1520.00 1574.00

Pollen

Turkey, Çanakkale-Çan

17

15.70

18.50

21.30

9.60

11.45

13.30

22.80 25.45

28.10

Turkey. Manisa-Soma

629.00

1074.50

1520.00

Pollen

Turkey, Milas-Kultak

19

15.70

17.25

18.80

9.60

11.35

13.10

24.70 26.20

27.70

Turkey. Çanakkale-Çan

735.00

1127.50

1520.00

Pollen

Turkey, Milas-Karacaağaç

x

17.00

17.70

18.40

6.20

9.35

12.50

26.50 27.30

28.10

Turkey. Milas-Kultak

1122.00

1321.00

1520.00

Pollen Pollen

Turkey,Muğla-YatağanEskihisar Turkey,Muğla-Yatağan-Bağyaka

18

17.20

19.15

21.10

7.70

10.50

13.30

27.30 27.60

27.90

Turkey. Milas-Karacaağaç

1146.00

1234.00

1322.00

17

17.20

19.00

20.80

7.70

10.50

13.30

27.30 27.60

27.90

1217.00

1286.00

1355.00

15

17.20

19.45

21.70

5.50

10.55

15.60

27.30 27.60

27.90

1217.00

1368.50

1520.00

x

x

x

x

8.00

9.00

10.00

27.00 27.50

28.00

Turkey.Muğla-YatağanEskihisar Turkey.Muğla-YatağanBağyaka Turkey.Muğla-Yatağan-Bayır

Pollen

Turkey,Muğla-Yatağan-Bayır

Pollen

Turkey, Kütahya-Seyitömer-Aslanlı

1217.00

1368.50

1520.00

Pollen Pollen

Turkey, Kütahya-Seyitömer-Tumulus Turkey, Kütahya-Tunçbilek

x

x

x

x

8.00

9.00

10.00

27.00 27.50

28.00

Turkey. Kütahya-Seyitömer-Aslanlı

1250.00

1325.00

1400.00

x

17.00

17.50

18.00

10.00 11.50

13.00

27.00 27.50

28.00

1250.00

1325.00

1400.00

14

13.50

17.40

21.30

1.80

7.55

13.30

25.40 26.75

28.10

Turkey. Kütahya-Seyitömer-Tumulus Turkey. Kütahya-Tunçbilek

Pollen

Turkey, Turkey,Aydın-Kuloğulları

1000.00

1125.00

1250.00

Pollen

Turkey, Turkey,Aydın-Kuloğulları

14

13.50

17.40

21.30

1.80

7.55

13.30

25.40 26.75

28.10

Turkey. Turkey.Aydın-Kuloğulları

1183.00

1351.50

1520.00

Pollen

10

12.90

17.30

21.70

0.90

8.25

15.60

23.60 25.85

28.10

Turkey. Turkey.Aydın-Kuloğulları

1183.00

1351.50

1520.00

Pollen

Turkey, Turkey,AydınBaşçayır Turkey, İzmir-Tire

x

16.50

19.00

21.50

5.00

9.15

13.30

27.30 27.70

28.10

Turkey. Turkey.Aydın-Başçayır

735.00

1154.50

1574.00

Pollen

Turkey, İzmir, Kocaçay Basin

x

14.50

17.78

21.05

3.40

8.35

13.30

25.40 26.75

28.10

Turkey. İzmir-Tire

887.00

1203.50

1520.00

Pollen

x

13.90

17.65

21.40

3.07

8.46

13.85

23.90 26.00

28.10

Turkey. İzmir. Kocaçay Basin

1183.00

1310.25

1437.50

Pollen

Turkey, İzmir, Cumaovası Basin Turkey, Samsun-Havza

18

17.20

19.00

20.80

6.20

9.75

13.30

27.30 27.60

27.90

810.00

1171.75

1533.50

late early Miocene late early Miocene late early Miocene late early Miocene late early Miocene

Pollen Pollen Pollen Pollen Pollen

Turkey, Bigadiç Basin Turkey, Bigadiç Basin Turkey, Balıkesir-Gönen Turkey, Balıkesir-Gönen Turkey, Çanakkale-Etili

23 23 16 x x

17.20 17.20 15.70 16.50 17.20

19.25 19.25 18.50 17.45 17.80

21.30 21.30 21.30 18.40 18.40

6.20 6.20 9.60 5.50 6.20

9.75 9.75 11.45 9.00 6.80

13.30 13.30 13.30 12.50 7.40

26.50 26.50 22.80 27.30 27.30

27.20 27.20 25.45 27.60 27.60

27.90 27.90 28.10 27.90 27.90

Turkey. İzmir. Cumaovası Basin Turkey. Samsun-Havza Turkey. Bigadiç Basin Turkey. Bigadiç Basin Turkey. Balıkesir-Gönen Turkey. Balıkesir-Gönen

1217.00 1217.00 1217.00 437.00 1122.00

1269.50 1269.50 1269.50 978.50 1238.50

1322.00 1322.00 1322.00 1520.00 1355.00

late early Miocene

Pollen

Turkey, Milas-Hüssamlar

17.00

19.15

21.30

6.20

9.75

13.30

27.30 27.70

28.10

Turkey. Çannakkale-Etili

1146.00

1148.50

1151.00

late early Miocene late early Miocene late early Miocene

Pollen Pollen Pollen

Turkey, İzmir-Sabuncubeli Turkey, Ankara-Beypazarı Turkey, Ankara-Beypazarı

17.00 16.50 17.00

17.90 18.65 19.15

18.80 20.80 21.30

6.20 4.80 7.70

9.65 9.05 10.50

13.10 13.30 13.30

27.30 27.50 26.00 26.95 27.30 27.70

27.70 27.90 28.10

Turkey. Milas-Hüssamlar Turkey. İzmir-Sabuncubeli Turkey. Ankara-Beypazarı Turkey. Ankara-Beypazarı

1146.00 1146.00 735.00 1146.00

1234.00 1234.00 1127.50 1234.00

1322.00 1322.00 1520.00 1322.00

Kayseri-Özer et al. (2014b) Akgün et al. (2007) Kayseri and Akgün (2009) Kayseri and Akgün (2009); Kayseri (2010) Kayseri-Özer et al. (2014a) Nakoman (1968)

Akkiraz et al. (2012)

Kayseri-Özer et al. (2014b)

Kayseri-Özer et al. (2014b); Akgün et al. (2007)

Üçbaş et al. (2012) Kayseri and Akgün (2009) Kayseri-Özer et al. (2014a) Kayseri-Özer (2014b) Kayseri-Özer (2014a)

24 27 27

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late middle Miocene late early Mioceneearly middle Miocene late early Mioceneearly middle Miocene late early Mioceneearly middle Miocene late early Miocene-early middle Miocene late early Miocene-early middleMiocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene-early middle Miocene late early Miocene

59

60

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Fig. 2. Interpolation of vegetation components during the late Oligocene. The type of organ (palynomorph) found in the assemblage is given by the circular shape and leaf found in the assemblage is given triangle shape; the colour inside the symbols represents the vegetation types. Colour gradients represent the percentage of a component. A-BLD component; B-BLE component; C-SCL + LEG components; D-M-Herb + D-Herb component; E. location of defined palynofloras and vegetation type. (1. Edirne; 2. Kırklareli; 3. Lüleburgaz; 4. İstanbulSilivri; 5. İstanbul-Ağaçlı; 6. İstanbul-Büyükçekmece; 7. Çanakkale-Tayfur; 8. Çorum-Güvendik; 9. Denizli-Tokça; 10. Muğla-Alatepe; 11. Denizli-Tavas-Sağdere; 12. Denizli-TavasÇaykavuştu; 13. Denizli-Tavas-Karadere; 14. Denizli-Tavas-Mortuma) and Explanation.

climatic variables of the MAT, CMT, WMT and MAP indicate a temperate palaeoclimate in the early Pliocene (Zanclean). These palaeoclimatic conditions of the early Pliocene could have caused the expansion of

the grassland area, represented by zonal herb components such as Asteraceae, Amaranthaceae–Chenopodiaceae, Caryophyllaceae, Dipsacaceae, Poaceae, Centaurea, Valerianaceae, Limonium, Knautia,

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

61

Fig. 3. Diagram of the late Oligocene indicates percentage of the SCL + LEG, zonal Herbs, D-Herb and M-Herb components.

Erodium, Apiaceae, Artemisia and Echinops. However, the presence of Pinus and Tsuga species could be explained by humid condition in the early Pliocene. An increase in temperature (CMT, MAT and WMT) and a decrease in precipitation (MAP) values for Anatolia are recorded from the early Pliocene (Zanclean) to late Pliocene (Piacenzian) (Fig. 9). These climatic conditions affected the palaeovegetation which was characterized by xerophytic plants (Asteraceae-Asteroideae).

4.3. Palaeovegetational correlation between Europe and Anatolia Kovar-Eder et al. (2008) established in detail the Neogene zonal vegetation of Europe regarding various High Resolution Intervals (HRI3 “late Burdigalian-Langhian, 14–17 Ma” and HRI2 “middle SerravallianTortonian, 6.5–12 Ma”), based on the IPR analysis method. The palaeovegetational data for a part of Europe reconstructed by IPR-vegetation analysis created by Kovar-Eder et al. (2008) did not include Anatolia. In this study, palaeovegetational interpretations have been illustrated for Anatolia using the IPR-vegetation analysis. During the late early-middle middle Miocene, broad-leaved evergreen forests and subhumid sclerophyllous forests were widespread in the western part of the central Paratethys region, Western Mediterranean (e.g. southern France) (Kovar-Eder et al., 2008). Conversely, the mixed mesophytic and broad-leaved evergreen forests and ecotones of these forests which grew under warm subtropical climatic condition were the dominant vegetation type in Anatolia. Open woodlands were observed from northern Spain (Kovar-Eder et al., 2008). However, open woodlands are not recorded based on the floral data of Anatolia during the late early-middle middle Miocene. The proportion of the broad-leaved deciduous forests increased from west to east in Europe. However, the broad-leaved deciduous and mixed mesophytic forests observed in some regions of Anatolia were due to local palaeotopographic conditions related to tectonic activities. Broadleaved evergreen and mixed mesophytic forests were widespread in the central part of Europe (Kovar-Eder et al., 2008). This forest and the ecotone between mixed mesophytic and broad-leaved evergreen forests were widespread in Western and Central Anatolia as in the western Mediterranean area. Sclerophyllous and legume like taxa were present in varying proportions in southwestern Europe and in the western part of the central Paratethys region, however these taxa were also

recorded in macrofloras from the some regions in Western and Central Anatolia. During the late Serravallian-middle Tortonian, the evergreen broadleaved and mixed mesophytic forests were confined mostly to the southern European regions and northern parts of the Balkan Peninsula (Kovar-Eder et al., 2008). In Western Anatolia during the late middle Miocene (middle-late Serravallian), mixed mesophytic forests, broadleaved evergreen forests, and an ecotone between these forests growing under temperate climatic condition were common (Tables 7 and 8). A high proportion of SCL + LEG components was less abundantly recorded in Western Anatolia during the late middle Miocene. 5. Conclusions 1. A semi-quantitative evaluation method has been used to map an integrated fossil plant record (86 leaf and pollen floras) in terms of zonal vegetation for the late Oligocene, late early Miocene-Pliocene based on the IPR analysis method. Furthermore, palaeoclimatic changes during the late Miocene and Pliocene interval are summarized using the Coexistence Approach. 2. Palynological data from the late Oligocene recorded from coal-bearing sediments of Anatolia indicate warm subtropical and humid conditions. Generally, values of the SCL + LEG components for the late Oligocene of Anatolia are low, and these low values are interpreted as humid climatic conditions. The palaeovegetational type of the late Oligocene is represented by mixed mesophytic forests and an ecotone between the mixed mesophytic and evergreen forests. Besides, new palaeoclimatic data for the Çankırı-Çorum basin calculated using the Coexistence Approach are correlated with published palaeoclimatic values, and these data are coherent with tempetature values previously published for Anatolia. 3. Generally, the vegetation of the late early Miocene-early middle Miocene interval in Western and Central Anatolia is characterized by an ecotone between mixed mesophytic and evergreen forests. Besides, the broad-leaved deciduous and subhumid sclerophyllous forests are recorded from some regions of Western and Central Anatolia. The abundance of the BLD components varied in Western Anatolia differring form the values obtained for Central Anatolia. This difference is interpreted as different palaeotopographic conditions in Western Anatolia due to graben tectonics. Moreover, humidity was

62

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Fig. 4. Interpolation of vegetation components during the late early-early middle Miocene. The type of organ (palynomorph) found in the assemblage is given by the circular shape and leaf found in the assemblage is given triangle shape; the colour inside the symbols represents the vegetation types. Colour gradients represent the percentage of a component. A-BLD component; B-BLE component; C-SCL + LEG components; D-M-Herb + D-Herb component; E. location of defined palynofloras and vegetation type (1. İzmir-Kemalpaşa (Dereköy); 2. İzmir-Kemalpaşa (Yeniköy); 3. Isparta-Yukarıkaşıkara; 4. Isparta-Yarıkkaya; 5,23. Manisa-Soma; 6.Balıkesir-Bigadiç; 7. Balıkesir-Gönen; 8-Çanakkale-Çan; 9. Ankara-Çayırhan; 10. Ankara-Hırkatepe; 11. Ankara-Beypazarı; 12. Aydın-Kuloğulları; 13,14. Aydın-Başçayır; 15. Aydın-Ilıdağ & Kızılcayer; 16. Muğla-Kultak; 17. Muğla-Karacaağaç; 18. Muğla-Hüssamlar; 19. Samsun-Havza; 20. Eskişehir-Koyunağılı; 21.Ankara-Beşkonak; 22. Ankara-Güvem; 24.İzmir-Tire, 25. Uşak-İlyaslı; 26. Afyon-Dumlupınar) (for explanation see Fig. 2).

Fig. 5. Diagram of the late early-early middle Miocene indicates percentage of the SCL + LEG, zonal Herbs, D-herb and M-herb components.

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

63

Fig. 6. Interpolation of vegetation components during the late middle Miocene, during the late Miocene-Pliocene. The type of organ (palynomorph) found in the assemblage is given by the circular shape and leaf found in the assemblage is given triangle shape; the colour inside the symbols represents the vegetation types. Colour gradients represent the percentage of a component. A-BLD component; B-BLE component; C-SCL + LEG components; D-M-Herb + D-Herb component; E. location of defined palynofloras and vegetation type (1. AydınKızılcayer; 2. Aydın-İncirliova; 3. Aydın-Söke; 4, 11. Aydın-Şahinali; 5. Aydın-Hasköy; 6. Aydın-Köşk; 7. Akhisar-Çıtak; 8. İzmir-Kemalpaşa (Dereköy); 9. İzmir-Kemalpaşa (Yeniköy); 10. Afyon-Dumlupınar; 12*. Aydın-Sarayköy-Sazak; 13*. Aydın-Hasköy (upper coal mine); 14*. Aydın-Köşk (upper coal mine); 15*. Kütahya-Tunçbilek 16*.Çanakkale-Çan, 17. ÇorumAlıcık; 18. Çorum-Ayva; 19.Kırşehir-Avcıköy; 20.Kırşehir-Kızılöz; 21.Konya-Ilgın; 22. Yozgat-Çiçekdağ; 23. Yozgat-Çamoluk; 24. Çorum-Dodurga; 25. Çorum-Evlik; 26. Çorum-İkizler; 27. Çorum-İncesu; 28. Çorum-İskilip; 29. Çorum-Kumbaba; 30. Çorum-Zambal; 31. İskenderun-Hacıahmetli; 32. İskenderun-Kızlargözü; 33. Nevşehir-Tuzköy; 34.Sivas-Akalın; 35. Sivas-Karagöl; 36. Sivas-Gemerek (Vasıltepe); 37. Elazığ; 38. Sivas-Hafik; 39-40. Kırıkkale-Balışeyh; 41. Erzurum-Horosan; 42. Bingöl-Halifan; 43. Denizli-Ericek; 44.DenizliKaracaören; 45. Denizli-Dandalas; 46. Denizli-Bıçakçı) (for explanation see Fig. 2).

prevalent in Anatolia, however seasonally dry conditions in the Büyük Menderes Graben and Southwestern Anatolia are recorded. 4. During the late middle Miocene, the broad-leaved evergreen and mixed mesophytic forests and ecotones between these forests was common in Anatolia. The values of zonal herb components increased in Anatolia from the late early to late middle Miocene and this could indicate a slow decreasing in humidity. 5. Palaeovegetation of the early late Miocene-latest Miocene interval is represented by the subhumid sclerophyllous forests in Sivas-Karagöl, mixed mesophytic forests in Aydın-Sarayköy-Sazak and NevşehirTuzköy, broad-leaved evergreen forests in Sivas-Akalın and

Vasıltepe, an ecotone between mixed mesophytic and broad-leaved evergreen forests in Aydın-Hasköy upper coal mine and SivasHafik, an ecotone between broad-leaved deciduous and mixed mesophytic forests in Aydın-Köşk upper coal mine and a xeric open woodland in Elazığ. The percentages of the BLE components at the middlelate Miocene transition are generally high, and the highest values of these components are obtained from the palynoflora from SivasKaragöl at the middle-late Miocene boundary. The most significant difference between the middle and early late Miocene is the increase in the zonal herb components values. The palaeovegetation of the latest late Miocene in Central Anatolia (Kırıkkale-Balışeyh) is

64

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Fig. 7. Diagram of the late middle Miocene indicates percentage of the SCL + LEG, zonal Herbs, D-herb and M-herb components.

Fig. 8. Diagram of the Late miocene-Pliocene indicates percentage of the SCL + LEG, zonal Herbs, D-herb and M-herb components.

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

65

Fig. 9. Climatic evolution in the Cenozoic: Continental CMT, MAT, WMT and MAP records of Anatolia from Kayseri-Özer (2014) is shown in grey box. Blue square and yellow box are coexistence data based on new microfloras of Anatolia, yellow-black lines is palaeoclimatic trend calculated by new data, and palaeoclimatic evolution based on the marine record from the Eocene to Holocene (Zachos et al., 2001).

characterized by the zonal xeric grassland or steppe, and high percentages of the zonal herb components, characterized by N40% percentage in the Kırıkkale-Balışeyh region. Temperature values for the CMT and MAT increase significantly from the Tortonian to the beginning of the Messinian, and these values decrease during the Messinian. The MAP values are lower than 1000 mm at the beginning of the Messinian. However, these values increased during the Messinian time. 6. The palaeovegetation of the Pliocene based on the IPR analysis is characterized by xeric open woodlands in Denizli-Ericek, KırıkkaleBalışeyh, zonal xeric graslands or steppes in Erzurum-Horosan, Denizli-Dandalas and Bıçakçı, subhumid sclerophyllous forests in Denizli-Karacaören and mixed mesophytic forests in Bingöl-Halifan. The values of the SCL + LEG and zonal herb component increase in the Pliocene. Generally, there is an increase in the BLD component values of Central and Eastern Anatolia differing from the values obtained from Western Anatolian floras. This difference might indicate that during the Pliocene, Central and Eastern Anatolia were topographically higher than Western Anatolia. A decrease in the palaeoclimatic values (CMT b5 °C, MAT and WMT) continues during the early Pliocene in Anatolia, however this decrease ended in the late Pliocene-early Pleistocene. Precipitation values for the early Pliocene are significantly raised and these values decrease again during the late Pliocene-early Pleistocene in Anatolia. The observed palaeovegetational and palaeoclimatic changes can be referred to the global cooling which occurred during the Pliocene, and/or uplift of Central and Eastern Anatolia.

Acknowledgements Financial support was provided by Science and Technical Research Council of Turkey (TUBİTAK grant code 104Y297) and DAAD (D565.000-1/06). I am very grateful to the journal and managing guest editor (Dr. Louis François), guest editor (Dr. Angela Bruch) and Dr. Torsten Utescher and anonymous reviewers for their constructive remarks and valuable comments, which markedly improved the final version of this paper.

References Abrantes, F., Voelker, A., Sierro, F.J., Naughton, F., Rodrigues, T., Cacho, I., Ariztegui, D., Brayshaw, D., Sicre, M., Batista, L., 2012. Palaeoclimate variability in the Mediterranean region. The Climate of the Mediterranean Region, pp. 1–86 http://dx.doi.org/ 10.1016/B978-0-12-416042-2.00001-X. Akgün, F., 1993. Palynological age revision of the Neogene Soma Coal Basin. Bull. Geol. Soc. Greece 28, 151–170. Akgün, F., Akyol, E., 1987. Palynological investigations of Akhisar (Çıtak) lignite. Geol. Soc. Turk. Bull. 30, 35–50. Akgün, F., Akyol, E., 1992. Correlative palynostratigraphy and paleoecology of Yukarıkaşıkara and Yarıkkaya (Isparta) coals. Turk. Assoc. Pet. Geol. 4, 10–20. Akgün, F., Akyol, E., 1999. Palynostratigraphy of the coal-bearing Neogene deposits graben in Büyük Menderes Western Anatolia. Geobios 32, 367–383. Akgün, F., Sözbilir, H., 2001. A palynostratigraphic approach to the SW Anatolian Molasse Basin: Kale-Tavas and Denizli Molasse. Geodin. Acta 14, 71–93. Akgün, F., Alişan, C., Akyol, E., 1986. A palynological approach to the Neogene stratigraphy of Soma area. Geol. Soc. Turk. Bull. 29, 13–25. Akgün, F., Olgun, E., Kuşçu, İ., Toprak, V., Göncüoğlu, M.C., 1995. Orta Anadolu kristalen kompleksinin “Oligo-Miyosen” örtüsünün stratigrafisi, çökelme ortamı ve gerçek yaşına ilişkin yeni bulgular. Turk. Assoc. Pet. Geol. Bull. 6, 51–68.

66

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Akgün, F., Kaya, T., Forsten, A., Atalay, Z., 2000. Biostratigraphic data (mammalia and palynology) from the Upper Miocene İncesu Formation at Düzyayla (Hafik Sivas, Central Anataloia). Turk. J. Earth Sci. 9, 57–67. Akgün, F., Akay, E., Erdoğan, B., 2002. Terrestrial to shallow marine deposition in central Anatolia: a palynological approach. Turk. J. Earth Sci. 11, 1–7. Akgün, F., Kayseri, M.S., Akkiraz, M.S., 2007. Paleoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in western and central Anatolia (Anatolia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 56–106. Akgün, F., Akkiraz, M.S., Üçbaş, S.D., Bozcu, M., Kapan-Yeşilyurt, S., Bozcu, A., 2013. Oligocene vegetation and climate characteristics in north-west Turkey: data from the south-western part of the Thrace Basin. Turk. J. Earth Sci. 22, 277–303. Akkiraz, M.S., Akgün, F., 2005. Palynology and age of the early Oligocene units in Çardak– Tokça Basin, southwest Anatolia: paleoecological implications. Geobios 38, 283–299. Akkiraz, M.S., Akgün, F., Örçen, S., 2010. Çivril doğusu’nda (Denizli) yüzlek veren Rupeliyen–erken Şattiyen (Oligosen) yaşlı Tokça Formasyonu’nun Paleoekolojisi: Sayısal iklimsel karşılaştırmalar Türkiye Jeoloji Bülteni 53 (1), 63–95. Akkiraz, M.S., Akgün, F., Utescher, T., Wilde, V., Bruch, A.A., Mosbrugger, V., Üçbaş, S.D., 2012. Palaeoflora and climate of lignite-bearing lower-middle Miocene sediments in Seyitömer and Tunçbilek sub-basins, Kütahya Province, Northwest Turkey. Turk. J. Earth Sci. 21, 213–235. Akyol, E., Akgün, F., 1990. Bigadiç, Kestelek, Emet ve Kırka boratlı Neojen tortullarının palinolojisi ve karşılaştırılması. Miner. Res. Explor. Inst. Turk. Bull. 111, 165–175. Akyol, E., Akgün, F., 1990. Bigadiç, Kestelek, Emet ve Kırka boratlı Neojen tortullarının palinolojisi ve karşılaştırılması. Maden Tetkik ve Arama Dergisi, No. 111. pp. 165–173. Akyol, E., Akgün, F., 1995. Trakya karasal Tersiyer’inde yaş tayinleri. Trakya Havzası Jeolojisi Sempozyumu Bildiri Kitabı (Lüleburgaz- Kırklareli). p. 28. Barrón, E., Rivas-Carballo, R., Postigo Mijarra, J.M., Alcalde-Olivares, C., Vieira, M., Castro, L., Pais, J., Valle-Hernández, M., 2010. The Cenozoic vegetation of the Iberian Peninsula: a synthesis. Rev. Palaeobot. Palynol. 162, 382–402. Baş, H., 1986. Domaniç-Tavşanlı-Kütahya-Gediz Yöresinin Tersiyer Jeolojisi. Jeoloji Müh. Dergisi 27, 11–18. Batı, Z., 1996. Palynostratigraphy and Coal Petrography of the Upper Oligocene Lignites of the Northern Thrace Basin, NW Turkey (PhD Thesis) Middle East Technical University, Ankara (1-341 pp.). Becker-Platen, J.D., 1970. Lithostratigraphische Untersuchungen im Känozoikum Südwest -Anatoliens (Türkei). Beihhefte zum Geologischen Jahrbuch 97 (244 pp.). Benda, L., 1971a. Grundzüge einer pollenanalytischen Gliederung des türkischen Jungtertiärs Känozoikum und Braunkohle der Türkei, 4. Beih. Geol. Jahrb. 113, 1–46. Benda, L., 1971b. Principles of the palynologic subdivision of the Turkish Kanozoikum und Braunkohlen der Turkei-3. Newsl. Stratigr. 1, 23–26. Benda, L., Muelenkamp, J.E., 1990. Biostratigraphic correlations in the eastern Mediterranean Neogene 9. Sporomorph associations and event stratigraphy of the eastern Mediterranean neogene. Newsl. Stratigr. 23, 1–10. Bertini, A., 2006. The northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sediment. Geol. 188–189, 235–258. Bertini, A., Martinetto, E., 2008. Messinian to Zanclean vegetation and climate of northern and Central Italy. Boll. Soc. Paleontol. Ital. 47, 105–121. Bertini, A., Martinetto, E., 2011. Reconstruction of vegetation transects for the Messinian– Piacenzian of Italy by means of comparative analysis of pollen, leaf and carpological records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 230–246. Bessedik, M., 1985. Reconstitution Des Environnements miocènes Des régions NordOuest méditerranéennes à Partir de La Palynologie (Thèse) Univ. de Montpellier II (162 pp.). Bozkuş, C., 1978. Erzurum-Horasan-Ali çeyrek linyit sahasına ait jeolojik rapor M.T.A., Enerji Hammaddeleri D., Report Number: 308 (unpublished). Bruch, A.A., Gabrielyan, I.G., 2002. Quantitative data of the Neogene climatic development in Armenia and Nakhichevan. Acta Univ. Carol. 46, 27–38. Bruch, A.A., Fauquette, S., Bertini, A., 2002. Quantitative climate reconstructions on Miocene palynofloras of the Velona Basin (Tuscany, Italy). Acta Carol. 46, 27–37. Bruch, A.A., Utescher, T., Alcalde Olivares, C., Dolakova, N., Mosbrugger, V., 2004. Middle and Late Miocene spatial temperature patterns and gradients in Central Europe - preliminary results based on paleobotanical climate reconstructions. Cour. Forschungsinst. Senck. 249, 15–27. Bruch, A.A., Utescher, T., Mosbrugger, V., Gabrielyan, I., Ivanov, D.A., 2006. Late Miocene climate in the circum-Alpine realm - a quantitative analysis of terrestrial palaeofloras. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 270–280. Bruch, A.A., Uhl, D., Mosbrugger, V., 2007. Miocene climate in Europe - patterns and evolution: a first synthesis of NECLIME. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 1–7. Bruch, A.A., Utescher, T., Mosbrugger, V., NECLIME members, 2011. Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 202–211. Çetmen, M., 2003. Afşin-Elbistan Kömür Havzasının Paleoekolojik Yönden İncelemesi Aegean University, PhD thesis (unpublished). Dowsett, H.J., Chandler, M.A., Robinson, M.M., 2009. Surface temperatures of the mid-Pliocene North Atlantic Ocean: implications for future climate. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 69–84. Ediger, V.Ş., 1981a. Fossil fungal and algal bodies from Thrace Basin, Turkey. Palaeontogr. Abt. B 179, 87–102. Ediger, V.Ş., 1981b. Some Tertiary dinoflagellate cysts from Thrace Basin, Turkey, and their usage in paleoenvironmental analysis. Rev. Esp. Micropaleontol. 13, 89–103. Ediger, V.S., 1990. Paleopalynology of coal-bearing Miocene sedimentary rocks associated with volcanics of the Biga peninsula (NW Turkey) and the effect volcanism on vegetation. Neues Jahrb. Geol. Palaeontol. Abh. 180, 259–277.

Ediger, V.Ş., Alişan, C., 1989. Tertiary fungal and algal palynomorph biostratigraphy of the northern Thrace basin, Turkey. Rev. Palaeobot. Palynol 58, 139–161. Ediger, V.Ş., Batı, Z., 1988. Morphological examination of Pediastrum (Chlorophyta) from the Tertiary strata of the Thrace basin (NW Turkey). Pollen Spores 30, 203–222. Ediger, V.S., Bati, Z., Kozlu, H., 1996. Tortonian–Messinian palynomorphs from the easternmost Mediterranean region around Iskenderun, Turkey. Micropaleontology 42, 189–205. Elsik, W.C., Ediger, V.Ş., Batı, Z., 1990. Fossil fungal spore: Anatolinites gen. nov. Palynology 14, 91–103. Ercan, T., Dinçel, A., Metin, S., Türkecan, A., Güney, E., 1978. Uşak Yöresindeki Neojen Havzalarının Jeolojisi. Türk. Jeol. Kurumu Bül. 21, 97–106. Erdei, B., 1995. The Sarmatian flora from Erdobenye-Ligetmajor, NE Hungary. Annls Hist.Nat. Mus. Nat. Hung. 87, 11–33. Erdei, B., Kvacĕk, Z., 1997. A newly recovered collection of the early Miocene flora of Kymi (Greece) previously misinterpreted as the upper Miocene flora of allya (NE Hungary). Annls Hist.-Nat. Mus. Nat. Hung. 89, 5–10. Erdei, B., Hably, L., Kázmér, M., Utescher, T., Bruch, A.A., 2007. Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 115–140. Ersoy, E.Y., Çemen, İ., Helvacı, C., Billor, Z., 2014. Tectono-stratigraphy of the Neogene basins in western Turkey: implications for tectonic evolution of the Aegean extended region. Tectonophysics 635, 33–58. Fauquette, S., Guiot, J., Suc, J.-P., 1998. A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 183–201. Fauquette, J.O., Suc, J.P., Guiot, J., 1999. Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 15–36. Fauquette, S., Suc, J.–.P., Bertini, A., Popescu, S.–.M., Wany, S., Bachiri Taoufiq, N., Perez Villa, M.–.J., Chikhi, H., Subally, D., Feddi, N., Clauzon, G., Ferrier, J., Agusti, J., Oms, O., Meulenkamp, J.E., 2006. How much the climate forced the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Late Miocene to Early Pliocene Environment and Climate Change in the Mediterranean Area. Palaeogeography, Palaeoclimatology, Palaeoecology 238, pp. 281–301. Forsten, A., Kaya, T., 1995. Hipparions (Mammalia-Equidae) from Gülpınar (ÇanakkaleTurkey). Paläontol. Z. 69, 491–501. Gemici, Y., Akyol, E., Seçmen, O., Akgün, F., 1991. Soma Kömür Havzası Fosil Makro ve Mikroflorası. Maden Tetkik Arama Enstitüsü Dergisi 112, 161–178. Gemici, Y., Akgün, F., Yılmazer, Ç., 1992. Akçaşehir (Tire-İzmir) Neojen Havzası Fosil Makro ve Mikroflorası. Doğa Türk Botanik Dergisi 16, 383–393. Gemici, Y., Akyol, E., Akgün, F., 1993. Şahinali (Aydın) Neojen Havzasının Fosil Makro ve Mikroflorası. Doğa Türk Botanik Dergisi 17, 91–106. Gennari, R., Manzi, V., Angeletti, L., Bertini, A., Biffi, U., Ceregato, A., Faranda, C., Gliozzi, E., Lugli, S., Menichetti, E., Rosso, A., Roveri, M., Taviani, M., 2013. A shallow water record of the onset of the Messinian salinity crisis in the Adriatic foredeep (Legnagnone section, Northern Apennines). Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 145–164. Gillet, S., Graman, F., Steffens, P., 1978. Neue biostratigraphische Ergebnisse aus dem brackischen Neogen an Dardanellen und Marmara-Meer (Türkei). Newsl. Stratigr. 7, 53–64. Güngör, H.Y., 1991. Ankara (Beypazarı) Kömürlerinin Palinolojisi Ve Paleoekolojisi (Licence Thesis) Dokuz Eylül University (38 pp.). Gürer, Ö.F., Yılmaz, F., 2002. Geology of the Ören and surrounding regions, SW Turkey. Turk. J. Earth Sci. 11, 2–18. Gürer, A., Bozcu, M., Yılmaz, K., Yılmaz, Y., 2001. Neogene basin development around Söke-Kuşadası (western Anatolia) and its bearing on tectonic development of the Aegean region. Geodin. Acta 14, 57–69. Hakyemez, H.Y., Örçen, S., 1982. Muğla Denizli arasındaki (GB Anadolu) Senozoyik yaşlı çökel kayaların sedimentolojik ve biyostratigrafik incelenmesi Mineral Research Exploration Institute, No: 7311 (unpublished). Helvacı, C., 1995. Stratigraphy, mineralogy and genesis of the Bigadiç borate deposits, western Turkey. Econ. Geol. 90, 1237–1260. İnci, U., 1998. Lignite and carbonate deposition in middle lignite succession of the Soma Formation, Soma coalfield, western Turkey. Int. J. Coal Geol. 37, 287–313. İnci, U., 2002. Depositional evolution of Miocene coal successions in the Soma coalfield, western Turkey. Int. J. Coal Geol. 51, 1–29. İslamoğlu, Y., Harzhauser, M., Gross, M., Jiménez-Moreno, G., Ćorić, S., Kroh, A., Rögl, F., van der Made, J., 2010. From Tethys to Eastern Paratethys: Oligocene depositional environments, paleoecology and paleobiogeography of the Thrace Basin (NW Turkey). Int. J. Earth Sci. 99 (2010) pp. 183–200 http://dx.doi.org/10.1007/s00531-008-0378-0. Ivanov, D., Ashraf, A.R., Mosburugger, V., Palamarev, E., 2002. Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 178, 19–37. Ivanov, D., Bozukov, V., Koleva-Rekalova, E., 2007a. Late Miocene flora from SE Bulgaria: vegetation, landscape and climate reconstruction. Phytol. Balcan. 13, 281–292. Ivanov, D., Ashraf, A.R., Utescher, T., Mosbrugger, V., Slavomirova, E., 2007b. Late Miocene vegetation and climate of the Balkan region: palynology of the Beli Breg Coal Basin sediments. Geol. Carpath. 58, 367–381. Jacques, F.M.B., Shi, G., Wang, W., 2011. Reconstructionof Neogene zonal vegetation in South China using theIntegrated Plant Record (IPR) analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307, 272–284. Jechorek, H., Kovar-Eder, J., 2004. Vegetational characteristics in Europe around the late early to early middle Miocene based on the plant macro record. Cour. Forschungsinst. Senck. 249, 53–62.

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68 Jimenez-Moreno, G., Fauquette, S., Suc, J.P., 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev. Paleobot. Palynol. 162, 403–415. Jimenez-Moreno, G., Alçiçek, H., Alçiçek, M.C., Hoek Ostende, L., Wesselingh, F., 2015. Vegetation and climate changes during the Late Pliocene and early Pleistocene in SW Anatolia. Quat. Res. 1–9. Kadir, S., Baş, H., 1996. Distribution and genesis of neoformed minerals in Koyunağlı (Mıhalıççık-Eskişehir) area. Maden Tetkik Arama Dergis. 118, 51–66. Karayiğit, A.İ., Akgün, F., Gayer, R.A., Temel, A., 1999. Quality, palynology, and palaeoenvironmental interpretation of the Ilgin lignite, Turkey. Int. J. Coal Geol. 38, 219–236. Kasaplıgil, H., 1976. Late Tertiary Cone Bearing-green Leaved Forests around Guven Village near 10 Kizilcahamam. M.T.A. Report. Ankara, Turkey. Kaya, T., 1989. Alçıtepe (Gelibolu Yarımadası) yöresi memeli faunaları Perissodactyla bulguları. Türk. Jeol. Kur. Bül. 14, 81–84. Kaya, T., 1992. Bayraktepe'de (Çanakkale) Rhinocerotidae fosilleri. Maden Tetkik Arama Dergis. 114, 145–155. Kaya, O., Ünay, E., Göktaş, F., Saraç, G., 2007. Early Miocene stratigraphy of central west Anatolia, Turkey: implications for the tectonic evolution of the eastern Aegean area. Geol. J. 42, 85–109. Kayseri, M.S., 2010. Oligo-Miocene Palynology, Palaeobotany, Vertebrate, Marine Faunas, Palaeoclimatology and Palaeovegetation of the Ören Basin (North of the Gökova Gulf), Western Anatolia (PhD thesis) Dokuz Eylül University, İzmir (1-552 pp.). Kayseri, M.S., Akgün, F., 2008. Palynostratigraphic, palaeovegetational and palaeoclimatic investigations on the Miocene deposits in central Anatolia (Çorum region and Sivas Basin). Turk. J. Earth Sci. 17, 361–403. Kayseri, M.S., Akgün, F., 2009. Palaeovegetational and palaeoclimatic interpretation during the Burdigalian-Langhian Period in Turkey. NECLIME Annual Meeting, (Turkey) Abstract Book, pp. 21–22. Kayseri-Özer, M.S., 2014. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in central, eastern and western Anatolia. Geodin. Acta (1–36 pp.). Kayseri-Özer, M.S., Emre, T., 2013. Palynology and palaeoclimate of the coal-bearing sediments in north Aydın-Köşk (Büyük Menderes Graben). XII International Icnofabric Workshop, pp. 78–79. Kayseri-Özer, M.S., Emre, T., 2016. Palaeovegetation and paleoclimate of the coal-bearing sediments during the Miocene in the Büyük Menderes graben (Aydın-Köşk). Acta Geol. Pol. (accepted for publication). Kayseri-Özer, M.S., Akgün, F., Mayda, S., Kaya, T., 2014a. Palynofloras and vertebrates from Muğla-Ören region (SW Turkey) and palaeoclimate of the middle BurdigalianLanghian period in Turkey. Bull. Geosci. 89, 137–162. Kayseri-Özer, M.S., Sözbilir, H., Akgün, F., 2014b. Miocene palynoflora of the Kocaçay and Cumaovası basins: a contribution to the synthesis of Miocene palynology, palaeoclimate, and palaeovegetation in western Turkey. Turk. J. Earth Sci. 23. http:// dx.doi.org/10.3906/yer-1301-9 (233–259 pp.). Kayseri-Özer, M.S., Karadenizli, L., Akgün, F., Oyal, N., Saraç, G., Şen, Ş., Tunoğlu, C., Tuncer, A., 2017. Palaeoclimatic and palaeoenvironmental interpretations of the late Oligocene, late Miocene-early Pliocene in the Çankırı-Çorum Basin (Central Turkey). Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 16–36. Kovar-Eder, J., Kvaček, Z., 2003. Towards vegetation mapping based on the fossil plant record. In: Kvaček, Z. (Ed.), Neogene Vegetation and Climate Reconstructions. Acta Universitatis Carolinae. Geologica 46, pp. 7–13. Kovar-Eder, J., Kvaček, Z., 2007. The integrated plant record (IPR) to reconstruct Neogene vegetation: the IPR-vegetation analysis. Acta Palaeobot. 47, 391–418. Kovar-Eder, J., Kvacek, Z., Martinetto, E., Roiron, P., 2006. Vegetation of southern Europe around the Miocene/Pliocene boundary (7-4 Ma-the High Resolution Interval I) as reflected in the macrofossil record. In: Agusti, J., Oms, O., Meulenkamp, J.E. (Eds.), Late Miocene to Early Pliocene Environment and Climate Change in the Mediterranean Area. Palaeogeography, Palaeoclimatology, Palaeoecology vol. 238, pp. 321–339. Kovar-Eder, J., Jechorek, H., Kvaček, Z., Parashiv, V., 2008. The integrated plant record: an essential tool for reconstructing neogene zonal vegetation in Europe. PALAIOS 23, 97–111. Kvaček, Z., 2007. Do extant nearest relatives of thermophile European tertiary elements reliably reflect climatic signal? Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 32–40. Kvaček, Z., Velitzelos, D., Velitzelos, E., 2002. Late Miocene Flora of Vegora Macedonia N. Greece. first edition. Korali publication, Greece, p. 175. Kvaček, Z., Teodoridis, V., Roiron, P., 2011. A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). Palaeontogr. B 285, 1–109. Lourens, L.J., Antonarakou, A., Hilgen, F.J., Van Hoof, A.A.M., Vergnaud-Grazzini, C., Zachariasse, W.J., 1996. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391–413. Mädler, K., Steffens, P., 1979. Neue Blattfloren aus dem Oligozan, Neogen und Pleistozen der Türkei. Beihhefte Geol. Jahrb. B 33, 3–33. Mazzini, I., Hudačkova, N., Joniak, P., Kovačova, M., Mikes, T., Mulch, A., Rojay, B., Lucifora, S., Esu, D., Soulie-Marsche, I., 2013. Palaeoenvironmental and chronological constraints on the Tuğlu Formation (Çankiri Basin, Central Anatolia, Turkey). Turk. J. Earth Sci. 22, 747–777. Miller, K.G., Wright, J.D., Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6848. Mosbrugger, V., 1999. The nearest living relative method. In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. Geological Society, pp. 261–265. Mosbrugger, V., Utescher, T., 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 61–86. Mosbrugger, V., Utescher, T., Dilcher, D.L., 2005. Cenozoic continental climatic evolution of Central Europe. Proc. Natl. Acad. Sci. 102, 14964–14969.

67

Nakoman, E., 1968. Ağaçlı Linyitlerinin Mikroflorasının Etüdü. Türk. Jeol. Kurumu Bül. 11, 51–57. Nebert, K., 1956. Denizli-Acıgöl merkezinin Jeolojisi, 1/100,000 ölçekli Denizli 105/1, 105/ 2 ve Isparta 106/1 paftalarının sahası içinde yapılan jeolojik harita çalısmaları hakkında rapor Maden Tetkik Arama Raporu No: 2509 (unpublished). Nebert, K., 1957. Die braunkohlenvorkommen von Oeren Mineral Research and Exploration Institute of Turkey, Maden Tetkik Arama Raporu No: 3011 (unpublished). Nebert, K., 1960. Tavşanlı'nın batı ve kuzeyindeki linyit ihtiva eden Neojen sahasının mukayeseli stratigrafisi ve tektoniği. M.T.A. Derg. 54, 7–35. Nebert, K., 1961. Kale-Tavas bölgesine ait yeni müşahedeler. Bull. Mineral Res. Explor. Inst. 57, 57–64. Nebert, K., 1978. Linyit içeren Soma Neojen bölgesi. Batı Anadolu. M.T.A. Enstitüsü Derg. 90, 20–70. Paicheler, J.C., Blanc, C., 1978. La Flore du Bassin Lacustre Miocene de Bes-Konak (Anatolie septentrionale, Turquie). Géol. Méditerr. 8, 19–60. Popescu, S.M., Biltekin, D., Winter, H., Suc, J.P., Melinte-Dobrinescu, M.C., Klotz, S.R., et al., 2010. Pliocene and lower Pleistocene vegetation and climate changes at European scale: long pollen records and climatostratigraphy. Quat. Int. 219, 152–167. Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., Kovac, M., 2004. Lithological-Paleogeographic maps of Paratethys; 10 maps late Eocene to Pliocene. Cour. Forschungsinst. Senck. 250, 46. Sakınç, M., Yaltırak, C., Oktay, F.Y., 1999. Palaeogeographical evolution of the Thrace Neogene Basin and the Tethys-Paratethys relations at north Western Turkey (Thrace). Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 17–40. Sancay, R.H., 2005. Palynostratigraphic and Palynofacies Investigation of the OligoceneMiocene Units in the Kars-Erzurum-Muş Subbasins (Eastern Anatolia) (Phd Thesis) Middle East Technical Unıversity. Sancay, R.H., Bati, Z., Işik, U., Kirici, S., Akça, N., 2006. Palynomorph, foraminifera, and calcareous nannoplankton biostratigraphy of Oligo-Miocene sediments in the Muş basin, eastern Anatolia, Turkey. Turk. J. Earth Sci. 15, 259–319. Saraç, G., 2003. Türkiye Omurgalı Fosil Yatakları. Maden Tetkik Arama 1–218. Şen, S., Seyitoğlu, G., 2009. Magnetostratigraphy of early-middle Miocene deposits from E–W trending Alaşehir and Büyük Menderes Grabens in western Turkey, and its tectonic implications. In: van Hinsbergen, D.J.J., Edwards, M.A., Govers, R. (Eds.), Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone 311. Special Publications of Geological Society, London, pp. 321–342. Şengör, A.M.C., Özeren, M.S., Keskin, M., Sakinç, M., Özbakir, A.D., Kayan, İ., 2008. Eastern Turkish high plateau as a small Turkic-type orogen: implications for post-collisional crust-forming processes. Earth Sci. Rev. 90, 1–48. Şentürk, K., Karasöse, C., Atalay, Z., Gürbüz, M., Ünay, E., Doruk, N., Batum, I., 1987. Çanakkale Boğazı ve dolyının jeolojisi Maden Tetkik Arama Raporu No: 8130 (unpublished). Seyitoğlu, G., 1997. Late Cenozoic tectono-sedimentary development of the Selendi and Uşak-Güre basins: a contribution to the discussion on the development of east– west and north trending basins in western Turkey. Geological Magazine 134, 163–175. Seyitoğlu, G., Scott, B., 1991. Late Cenozoic crustal extenension and basin Formation in West Turkey. Geol. Mag. 128, 155–166. Sözbilir, H., 2002. Revised stratigraphy and facies analysis of the Palaeocene-Eocene supra-allochthonous sediments and their tectonic significance (Denizli, SW Turkey). Turk. J. Earth Sci. 11, 1–27. Sözbilir, H., Sari, B., Uzel, B., Sümer, Ö., Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension–parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Res. 23, 423–448. Sprovieri, R., Sprovieri, M., Caruso, A., Pelosi, N., Bonono, S., Ferraro, L., 2006. Astronomic forcing on the planktonic foraminifera assemblage in the Piacenzian Punta Piccola section (southern Italy). Paleoceanography 21, PA4204. http://dx.doi.org/10.1029/ 2006PA001268. Syabryaj, S., Utescher, T., Molchanov, S., 2007. Changes of climate and vegetation during the Miocene in the territory of Ukraine. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 153–168. Takahashi, K., Jux, U., 1991. Miocene palynomorphs from lignites of the Soma Basin (west Anatolia, Turkey). Bulletin of the Faculty of Liberal Arts, Nagasaki University. Nat. Sci. 32 (1), 7–165. Teodoridis, V., 2010. The integrated plant record vegetation analysis of Early Miocene assemblages from the Most Basin (Czech Republic). N. Jb. Geol. Paläont. (Abh.) 256, 303–316. Teodoridis, V., Kvaček, Z., Uhl, D., 2009. Late Neogene palaeoenvironment and correlation of the Sessenheim-Auenheim floral complex. Palaeodiversity 2, 1–17. Teodoridis, V., Kovar-Eder, J., Marek, P., Kvacek, Z., Mazouch, P., 2011. The integrated plant record vegetation analysis: internet platform and online application. Acta Musei Natl. Pragae 67, 159–165. Üçbaş, S.D., Akkiraz, M.S., Akgün, 2012. Oligo-Miyosen yaşlı Yenice-Kalkım havzasının (KB Türkiye) Paleoiklimi Ve Paleovejetasyonu. 1. Yerbilimleri Sempozyumu Bildiri Özleri Kitabı, pp. 105–109. Uhl, D., Mosbrugger, V., Bruch, A.A., Utescher, T., 2003. Reconstructing palaeotemperatures using leaf floras — case studies for a comparison of leaf margin analysis and the coexistence approach. Rev. Palaeobot. Palynol. 126, 49–64. Ünay, E., de Bruijn, H., 1984. On some neogene rodent assemblages from both sides of the Dardanelles, Turkey. Newsl. Stratigr. 13, 119–132. Ünay, E., Göktaş, F., 1999. Söke Çevresi (Aydın) Geç Erken Miyosen ve Kuvaterner yaşlı küçük memelileri: Ön sonuçlar. Türk. Jeol. Bül. 42, 99–113. Utescher, T., Djordjevic-Milutinovic, D., Bruch, A., Mosbrugger, V., 2007a. Palaeoclimate and vegetation change in Serbia during the last 30 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 157–168.

68

M.S. Kayseri-Özer / Palaeogeography, Palaeoclimatology, Palaeoecology 467 (2017) 37–68

Utescher, T., Erdei, B., François, L., Mosbrugger, V., 2007b. Tree diversity in the Miocene forests of western Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 226–250. Utescher, T., Mosbrugger, V., Ivanov, D., Dilcher, D.L., 2009. Present-day climatic equivalents of European Cenozoic climates. Earth Planet. Sci. Lett. 284, 544–552. Utescher, T., Bruch, A.A., Micheels, A., Mosbrugger, V., Popova, S., 2011. Cenozoic climate gradients in Eurasia — a palaeo-perspective on future climate change? Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 351–358. Utescher, T., Ashraf, A.R., Dreist, A., Dybkjær, K., Mosbrugger, V., Pross, J., Wilde, V., 2012. Variability of neogene continental climates in Northwest Europe - a detailed study based on microfloras. Turk. J. Earth Sci. 21, 289–314. Utescher, T., Bruch, A.A., Erdei, B., François, L., Ivanov, D., Jacques, F.M.B., Kern, A.K., Liu, Y.S., Mosbrugger, V., Spicer, R.A., 2014. The coexistence approach-theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 58–73 (C.). Wolfe, J.A., 1993. Method of obtaining climatic parameters from leaf assemblages. U.S. Geol. Surv. Bull. 2040, 1–71. Wolfe, J.A., 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annu. Rev. Earth Planet. Sci. 23, 119–142.

Worobiec, G., 2003. New fossil floras from neogene deposits in the Betchatów Lignite Mine. Acta Palaeobot. 3, 3–133. Yağmurlu, F., 1983. Akhisar doğusu Neojen topluluğunun Jeolojisi Ve kömür Potansiyeli (PhD thesis) Dokuz Eylül University, İzmir, pp. 1–217. Yavuz-Işık, N., 2008. Vegetational and climatic investigations in the Early Miocene lacustrine deposits of the Güvem Basin (Galatean Volcanic Province), NW Central Anatolia, Turkey. Rev. Paleobot. Palynol. 150, 130–139. Yavuz-Işık, N., Toprak, V., 2010. Palynostratigraphy and vegetation characteristics of neogene continental deposits interbedded with the Cappadocia ignimbrites (Cenrtal Anatolia, Turkey). Int. J. Earth Sci. 99, 1887–1897. Yavuz-Işık, N., Saraç, G., Ünay, E., de Bruijn, H., 2011. Palynological analysis of Neogene mammal sites of Turkey — vegetational and climatic implications Yerbilimleri 32, 105–120. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693.