Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria

Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria

Journal of Ethnopharmacology 150 (2013) 1145–1153 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsev...

626KB Sizes 2 Downloads 86 Views

Journal of Ethnopharmacology 150 (2013) 1145–1153

Contents lists available at ScienceDirect

Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep

Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria M.S. Traore a,b, M.A. Baldé a,b, M.S.T. Diallo a,b, E.S. Baldé a,b, S. Diané a,b, A. Camara a,b, A. Diallo a, A. Balde a, A. Keïta a,b, S.M. Keita c, K. Oularé b,d, F.B. Magassouba a,b, I. Diakité b, A. Diallo b, L. Pieters e, A.M. Baldé a,b,n a

Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea Research and Valorization Center on Medicinal Plants, Dubréka, Guinea c Environment Study and Research Center (CERE), University of Conakry, Guinea d Faculty of Sciences, University of Kankan, Guinea e Department of Pharmaceutical Sciences, University of Antwerp, Belgium b

art ic l e i nf o

a b s t r a c t

Article history: Received 7 June 2013 Received in revised form 19 October 2013 Accepted 20 October 2013 Available online 31 October 2013

Ethnopharmacological relevance: The objective of the present study was to collect and document information on herbal remedies traditionally used for the treatment of malaria in Guinea. Materials and methods: The survey was carried out from May 2008 to September 2010 and targeted traditional medical practitioners and herbalists. The questionnaire and oral interviews were based on the standardized model which was prepared by the “Centre de Recherche et de Valorisation des Plantes Médicinales (CRVPM) – Dubréka”. Results and discussion: A total of 258 people (141 males and 117 females) from which 150 traditional healers and 108 herbalists were interviewed. The age of informants ranged from 28 to 82 years old. 57% (149/258) of the interviewees were more than 50 years old. The respondents had good knowledge of the symptoms of malaria, and a fairly good understanding of the causes. One hundred thirteen plant species were recorded, out of which 109 were identified. They belonged to 84 genera and 46 families. The most frequently cited plants were Vismia guineensis, Parkia biglobosa, Nauclea latifolia, Harungana madagascariensis, Terminalia macroptera, Crossopteryx febrifuga, Terminalia albida, Annona senegalensis, and Nauclea pobeguinii. The leaves were most frequently used (80/113 species), followed by stem bark (38/113 species) and roots (4/113 species). The remedies were mostly prepared by decoction (111 species), followed by maceration (seven species). Only one species was prepared by infusion. Conclusion: The present study showed that traditional healers in Guinea have a consistent knowledge of antimalarial plants. Further research should be carried out to compare the anti-malarial activity of the different species, and to check if their use against malaria can be scientifically validated. & 2013 Elsevier Ireland Ltd. All rights reserved.

Keywords: Guinea Malaria Ethnobotanical survey

1. Introduction Malaria is still the most common parasitic infection in many tropical and subtropical countries. The WHO Malaria Report, 2011 estimates that 3.3 billion people were at risk of malaria in 2010, although of all geographical regions, populations living in subSaharan Africa have the highest risk of acquiring malaria. A dramatic revival of malaria is ongoing due to the increasing resistance of vectors to insecticides and to the progressive resistance of the parasite, mainly Plasmodium falciparum, to drugs

n Corresponding author at: Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea E-mail address: [email protected] (A.M. Baldé).

0378-8741/$ - see front matter & 2013 Elsevier Ireland Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jep.2013.10.048

(Gardella et al., 2008). Moreover, resistance to artemisinin has been recently described in Asia (Burki, 2009; Egan, 2009). These developments and the difficulty of creating efficient vaccines underline the urgent need for new antimalarial drugs. In Africa, herbal medicines are an important part of culture and traditions. Apart from their cultural significance, traditional medicines are accessible and affordable to the majority of the African population. In Guinea, malaria represents the first cause of medical consultations and hospitalizations causing an enormous burden to public health and the national economy. Its prevalence is 53% in rural areas and 18% in urban areas (EDS-MICS, 2012). Due to financial, geographical and/or cultural obstacles, most people especially in rural areas have no access to modern and conventional therapies such as Artemisinin-based Combination Therapy (ACT) to treat malaria, and affected populations turn towards traditional

1146

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

medicine and medicinal plants to treat malaria. The average cost of one dosage of ACT ranged from €5 to 8.5. Consequently, affected populations turn towards traditional medicine and medicinal plants to treat malaria. In this context, the pharmacological and phytochemical investigation of these plants could lead not only to the valorization of local vegetal species but also to the discovery of new antimalarial “lead compounds” (Jansen et al., 2010). The aim of the present study was to collect and document information on herbal remedies traditionally used for the treatment of malaria in Guinea. The results of this study will provide a basis for further biological, phytochemical and pharmacological studies on the herbal remedies traditionally used to treat malaria.

2. Materials and methods 2.1. Study area Guinea is a coastal country of West Africa, ranging between 7130 and 12130 of northern latitude, 81 and 151 of Western longitude. It covers a surface of 245.857 km2. Limited to the West by the Atlantic Ocean, to the North-West by Guinea-Bissau, to the North by Senegal, to the North-East by Mali, to the East by the Ivory Coast, and to the South by Liberia and the Sierra Leone, it has Conakry as its capital (Fig. 1). It sets out in four distinct natural areas: Low Guinea, area of littoral plains; Middle Guinea, with mountainous solid masses and lateritic high plateaus; Upper Guinea, a vast plateau; and Forest Guinea, a true chain of mountains. The population was estimated at 10,884,958 habitants in 2012, with an average density of 37.61 inhabitants per km2. It is characterized by a diversity of ethnic groups, languages and religions with a variety of habits. The main ethnic groups are Soussous (Low Guinea), Peuhls (Middle Guinea), Malinkees (Upper Guinea), Kissis, Tomas and Guerzees (Forest Guinea). The principal occupation of the population is agriculture. The climate is of the tropical type, and is subject to the influence of local factors. The vegetation is dependent on the type of climate (Magassouba. et al., 2007; Anonymous, 2013). The survey was carried out in nine cities, i.e. Labé, Tougué in Middle Guinea; Forecariah, Dubréka, Coyah in

Low Guinea; Kankan, Siguiri in High Guinea; and N' Zerékoré, Macenta in Forest Guinea. 2.2. Ethnobotanical survey The survey was carried out from May 2008 to September 2010 and targeted traditional medical practitioners and herbalists. The objectives of the study were clearly explained and a verbal consent was obtained by interviewers from each informant. The participating Traditional Medical Practitioners were identified with the help of opinion leaders such as religious leaders, the chiefs of the villages, or old patriarchs. Traditional healers were interviewed in their homes, and herbalists in front of their stalls (on the roadside or various market places). The questionnaire and oral interviews were based on the standardized model which was designed by the “Centre de Recherche et de Valorisation des Plantes Médicinales (CRVPM) – Dubréka”. The main questions focused on demographic data (age, sex), educational level, professional experience, knowledge about malaria: local names, cause, known signs and symptoms of malaria, plants used in the preparation of antimalarial remedies, plant parts employed, mode of preparation, and mode of administration. To determine the dose per patient, every traditional healer was asked to prepare 10 doses. The average of the 10 doses represented the individual dose. The plant species were collected by the traditional healers in the presence of the investigators during regular walks in the field. The collected voucher specimens were pressed, dried, identified and deposited at the herbarium of the CRVPM-Dubréka. Their botanical identification was done by the botanists from the “CRVPM – Dubreka”, and authenticated by Dr. Sékou Moussa Keita of the “CERE”, the Environmental Study and Research Center, University of Gamal Abdel Nasser, Conakry. 2.3. Literature survey Previous reports on the antiplasmodial activity were searched in scientific databases (PubMed, Web of Science) covering international peer-reviewed journals, using the scientific plant name and “Plasmodium” or “Malaria” as search terms.

Fig. 1. Map of Guinea.

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

3. Results and discussion 3.1. Demographic data Two hundred fifty-eight people (141 males and 117 females) were included in the study viz. 57 (22%) from Middle Guinea (22 in Labé, 35 in Tougué), 102 (39.50%) from Low Guinea (40 in Dubréka, 32 in Forécariah, 30 in Coyah), 64 (25%) from Upper Guinea (35 in Kankan, 29 in Siguri), and 35 (13.50%) from Forest Guinea (18 in N’Zérékoré, 17 in Macenta). Among the 258 interviewed people 150 (58.14%) were traditional healer and 108 (41.86%) were herbalist (Table 1). The age of the informants ranged from 28 to 82 years old. Younger informants were less represented than old ones. Of the 258 traditional healers and herbalists, 0.77% were aged less than 30 years, while 15.90% were from 30 to 40 years, and 57% were more than 50 years old. This is in agreement with previous results described by Magassouba et al. (2007) and Diallo et al. (2012). Consequently, there is an urgent need for documentation of this invaluable knowledge, since there is a persistent gap in knowledge of herbal practice between the younger and older generations. The educational level of the interviewees was low: 28.30% (73/258) had some primary schooling and 4.65% (12/258) had some secondary schooling. Only 1.55% (4/258) had attended a higher education institution. The majority of traditional medical practitioners 65.50% (169/258) was illiterate and consequently could not document their practice. 36.04% had over 20 years experience in malaria therapy while 41.31% had 10–20 years experience. Inheritance (50%) was the major source of knowledge acquisition. It is advocated that knowledge of treatment of the disease acquired by inheritance and training must be documented for future generations. 3.2. Knowledge about malaria Malaria is locally Known as “nawnaarè djontè” in pular, “dembadimi” in susu, “dembalin” in malinké, “nénée yaa” in Mano, and “kwèlè dyon” in Guerzé. The understanding of malaria among the respondents was good. Eighty-five percent of the respondents knew that malaria was caused by mosquito bites, though some mentioned Table 1 Demographic data of the informants (n ¼258). Group

n

%

Male Female Less than 30 years 30–40 years 41–50 years 51–60 years 61–70 years More than 70 years

141 117 2 41 66 58 59 32

54.65 45.35 0.77 15.90 25.58 22.48 22.87 12.40

Experience

Less than 5 years 5–10 years 11–20 years More than 20 years

4 57 104 93

1.55 22.10 40.31 36.04

Educational background

Illiterate Primary level Secondary level Higher education level

169 73 12 4

65.50 28.30 4.65 1.55

Status

Traditional healer Herbalist

150 108

58.14 41.86

Mode of acquisition of the knowledge

Inheritance Learning Personal experience Dream Old patient

129 88 29 9 3

50.00 34.10 11.24 3.50 1.16

Gender Age

1147

indirect causes, including stagnant water, dirty environment and unhygienic living conditions. They also identified malaria based on signs and symptoms like high body temperature (90%), headache (70%), shivering (45%), weakness (70%), loss of appetite (75%), abdominal pain and vomiting (65%). Some traditional healers (17%) asserted that the complications of malaria led to yellow coloration of the skin, the eyes and the palms. All the traditional healers interviewed used herbal remedies for the treatment of malaria while about 15% used a combination of herbal remedies and animal products. 3.3. Inventory of plant species One hundred thirteen plant species were recorded, among which 109 could be identified. They belonged to 84 genera and 46 families. As indicated in Table 2, the most represented families were Caesalpiniaceae, Rubiaceae, Combretaceae with 11, 10 and seven species, respectively, followed by Anacardiaceae, Fabaceae, Mimosaceae, Moraceae, with five species each. The remaining 28 families were each represented by one species. In similar work Yetein et al. (2013) identified in Benin 82 species belonging to 78 genera and 43 families, Koudouvo et al. (2011) identified in Togo 52 species belonging to 49 genera and 29 families; and Asase et al. (2010) identified in Ghana 30 species belonging to 28 genera in 20 families. According to several reports Rubiaceae, Caesalpiniaceae, Fabaceae, Moraceae, Combretaceae, and Anacardiaceae comprise the main antimalarial plant species in different West African countries (Asase et al. 2010; Koudouvo et al., 2011; Yetein et al., 2013). The most frequently cited plant species by the traditional healers and herbalists were Vismia guineensis (38 quotations), Parkia biglobosa (31), Nauclea latifolia (31), Harungana madagascariensis (27), Terminalia macroptera (25), Crossopteryx febrifuga (24), Terminalia albida (23), Annona senegalensis (23), and Nauclea pobeguinii (17). Thus, based on the results of the survey, these plant species could be considered as promising candidates for further scientific validation. Most of the collected and identified plant species are also well-known as antimalarials in the traditional medicine of other countries, such as in Ghana: Mangifera indica, Ananas comosus, Carica papaya, Khaya senegalensis, Citrus aurantifolia, Nauclea latifolia, Paullinia pinnata, Zanthoxylum zanthoxyloides, Tamarindus indica, Parkia biglobosa, Mitragyna inermis, Jatropha curcas, Gardenia ternifolia, Afzelia afracana, Azadirachta indica, Cassia sieberiana, Ficus platiphylla (Asase et al., 2005; Asase and OppongMensah, 2009; Asase et al., 2010); in Benin: Dialium guineense, Trichilia emetica (Bero et al., 2009); in Burkina Faso: Cochlospermun tinctorium, Cochlospermum planchonii, Vismia guineensis, Pavetta crassipes, Terminalia macroptera (Benoit-Vical et al., 2003; Sanon et al., 2003; Jansen et al., 2010); in Ivory Coast: Vernonia colorata, Vismia guineensis, Ficus vallis, Hymenocardia acida, Hibiscus asper, Uapaca guineensis, Parinari exelsa, Ximenia americana, Entada africana (Kamanzi et al., 2004; Menan et al., 2006); in Congo: Lantana camara, Alchornea cordifolia, Harungana madagascariensis (Mesia et al., 2010; Muganza et al., 2012); in Nigeria: Persea americana, Mangifera indica, Ancardium occidentale, Annona senegalensis, Afzelia africana, Alchornea cordifolia, Bridelia ferruginea, Bridelia micrantha, Erythrina senegalensis, Zanthoxylum zanthoxyloides, Piliostigma thonnigii, Anthocleista djalonensis, Daniellia oliveri, Crossopteryx febrifuga, Erythrina senegalensis, Guiera senegalensis, Harungana madagascariensis, Khaya senegalensis, Parkia biglobosa, Newbouldia laevis, Scoparia dulcis (Ajaiyeoba et al., 2006; Adebayo and Krettli., 2011; Dike et al., 2012); in Ethiopia: Azadirachta indica, Lawsonia inermis, Tamarindus indica, Jatropha curcas (Mesfin et al., 2012); in Kenya: Harissonia abyssinica, Bridelia micrantha, Dichrostachys cinerea, Musa paradisiaca, Azadirachta indica, Tamarindus indica (Nguta et al., 2010); in Togo: Carica

1148

Table 2 Plant species used against malaria. Botanical name

Voucher specimen no.

Local name (ethnic)

Plant part

Source

Preparation form

Citations per plant part

Citations per species

Anacardiaceae (5)

Anacardium occidentale L. Mangifera indica L.

3HK 30 3HK31

Yalaghè (P), Sömön (M) Mango Seny (P)

Leaves Leaves

L, C, D L,T, F

Dc Dc

5 4

5 4

Pseudospondias microcarpa (A.Rich.) Engl.

3HK32

Dhölogha (P)

Stem bark

L

Dc

2

2

Sorindeia juglandifolia (A. Rich.) Planch. ex Oliv. Spondias mombin L. Anisophyllea laurina R. Br. ex Sabine Annona senegalensis Pers.

3HK33

Leaves

F,D,C

Dc

5

5

Leaves Leaves Leaves

L,C,D D D,C,F,K

Dc Dc Dc

6 4 23

6 4 23

6HK23

Kansi bomba (S) Sandji bonbon (P) Tyalè (P) Lukurè (S) Kantinyi (S) Djodi (M) Doukoummé bourourè (P) Sounsou (M) Hebhe wulu (G)

Stembark

N

Dc

2

2

6HK24

Boylé (P), Moronda (S)

Leaves

L, D

Dc

10

10

Baissea multiflora A.DC. 8HK55 Holarrhena floribunda (G. Don) Dur. & 8HK56 Schinz. Landolphia heudelotii A.DC. 8HK57 Strophanthus hispidus DC. 8HK58 Vernonia colarata (Willd.) Drake 13HK176

Yalan pôrè (P) Indamma (P)

Root bark Leaves/root bark

L L,D,T

Dc Dc

5 12/2

5 14

Porè (P) Kindè bhoddi (P) Khonokhongni (S)

Leaves Root bark Leaves

L,T L,T L

Dc Dc Dc

4 3 4

4 3 4

Markhamia tomantosa (Benth.) K. Schum. Newbouldia laevis (P. Beauv) Seem. Ananas comosus (L.) Merr. Afzelia africana Sm. Chamaecrista nigricans (Vahl) Greene Cassia siamea Lam.

18HK201

Kaafa wadu (P)

Leaves

L,T,K

Dc

6

6

18HK203 24HK207 27HK303 27HK305 27HK306

Root bark Leaves Stembark Stem bark/leaves Leaves

D,L D,C L,S, D,L D,F,C

Dc Dc Dc Dc Dc

6 4 8 3/4 6

6 4 8 7 6

Cassia sieberiana DC.

27HK308

Kinki (S) Sukundèn (P) Fougnè (P) Lengué (p) Lenkè (M) Seinghaïghel (P) Fulaköka (S) Cassia (P) Gbangba (S) Sindja (P), Sindjan (M) Sandan (M) Houloungni (S) Tamanbodo (M) Pompodogo (P) Tamba (M), Bhöto (P) Köfina (M) Mèko (P)

Leaves/root bark

S,K,L,C,F

Dc

9/6

15

Leaves/stem bark

S,K,C,F

Dc

6/3

9

Root bark

L,K,T

Dc

6

6

Leaves

L,T

Dc

5

5

Leaves

S,K,L,T

Dc

9

9

Koonia nyalen (G) Teppé darôlla (P) Barkè (P) Yorokoye (S) Djabhè (P) Tombi (S) Yiridjè (M) bhoudi (P) Kura (P)

Leaves

12

12

Leaves/stem bark

D,N,L, Dc Ma L, D, K, S Dc/Mc

6/5

11

Leaves

D,C,F

5

5

Leaves/root bark

S, K, Ma, Dc C L, T, D Dc/Mc

5/6

11

9/6

15

Anisophylleaceae (1) Annonaceae (3)

Cleistopholis patens (Benth.) Engl. & Diels Uvaria chamae P. Beauv. Apocynaceae(4)

Asteraceae (1)

Bignoniaceae (2)

Bromeliaceae(1) Caesalpiniaceae (11)

3HK34 5HK4 6HK21

Daniellia oliveri (Rolfe) Hutch. & Dalz. 27HK400

Caricaceae(1)

Detarium microcarpum Guill. & Perr.

27HK403

Detarium senegalense J.F.Gmel.

27HK404

Dialium guineense Willd.

27HK407

Mezoneuron benthamianum Baill.

27HK411

Piliostigma thonningii (Schumach.) Milne-Redhead Tamarindus indica L.

27HK412

Carica papaya L.

31HK430

Chrysobalanaceae (1) Parinari benna Scott-Elliot

27HK419

35HK435

Leaves/stem bark

Dc

Previous reports of antiplasmodial activity

IC50 450 mg/ml on strain FcB1 (Zirihi et al., 2005) IC50 ¼26 mg/ml on FcM29 (Mbatchi et al., 2006), Ch¼ 30% strain FcB1 (Lacroix et al., 2011)

Ch¼ 30% on P. berghei (Okokon et al., 2006)

IC50 ¼12 mg/ml on FcM29 (Menan et al., 2006), IC50 ¼ 3 mg/ml on W2 (Kaou et al., 2008)

IC50 ¼21 mg/ml on FcM29 (Mbatchi et al., 2006)

IC50 ¼42.1 mg /ml on 3D7 (Bero et al., 2011)

Ch¼ 81.09% on P. berghei (Mesfin et al., 2012) IC50 ¼15.19-18.09 mg /ml strain FCK2 (Bhat and Surolia, 2001)

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

Family (total no. of species)

Cochlospermaceae(2) Cochlospermumplanchonii Hook.f.

Tourouban musoman (M)

Root

K, S

Cochlospermum tinctorium A. Rich.

37HK442

Rémè (p) Tourouban kéman (M)

Root

Combretum glutinosum Perr. Combretum micranthum G.Don

38HK447 38HK450

Dhoki Sattaga (P) Kankaliba (P), Kankalibanyi (S)

Combretum nigricans Lepr.Var.elliotii (Engl.& Diels) Combretum paniculatum Vent. Guiera senegalensis J.F.Gmel.

38HK451

Dhoki (P)

38HK452 38HK456

Tantafiri (S) Yayé safiri (P) Leaves Koumgbénin (M) Leaves

Terminalia albida Sc.Elliot

38HK457

Terminalia macroptera Guill.

38HK462

Kobérafiirè (S) Böri billel (P) Woli (S)

Dilleniaceae (2)

Tetracera alnifolia Willd.

44HK470

Dipterocarpaceae(1) Ebenaceae (1) Euphorbiaceae (4)

Tetracera potatoria Afzel. Monotes kerstingii Gilg Diospyros mespiliformis Hochst. Alchornea cordifolia (Schumach.& Thonn.) Müll. Arg.

Combretaceae (7)

Fabaceae (5)

Hymenocardiaceae (1)

Dc,Mc

6

6

L, T, K, S, Dc, Mc

14

14

Leaves Leaves

L L,T,K,C, D,S

Dc Dc

2 15

2 15

Leaves

L,T

Dc

6

6

C,D K, S

Dc Dc

7 7

7 7

Leaves /stem bark L,D,C,F

Dc

10/13

23

Leaves/stem bark

D,C,F

Dc

11/14

25

Nintè (S)

Leaves

C,D

Dc

6

6

44HK471 46HK473 48HK476 52HK478

Gbannaa (G) Bérébéré (M) Dabakala (P) Pélènnaa (G) Bölönta (S)

Leaves Leaves Root bark Root bark

Ma,N D,K K,S Ma, N, L, D

Dc Dc Dc Dc

5 7 8 9

5 7 8 9

Bridelia micrantha (Hochst.) Baill.

52HK482

Daafi (P)

Leaves/root bark

5/4

9

Euphorbia heterophylla L. Jatropha curcas L.

52HK484 52HK490

Tumbetalee khongni (S) Baani (M), Kiidi (P)

Leaves Leaves/stem bark

Ma, N, L, Dc D F,C Dc L, K, S Dc

5 5/2

5 7

Erythrina senegalensis DC

53HK 502

Mbötyölla (P) Tilimingni (S)

Leaves/stem bark

L,D,C,K

Dc

5/4

9

Erythrina sigmoidea Hua Pericopsis laxiflora (Benth. ex Bak.) van Meeuwen Pterocarpus erinaceus Poir.

53HK506 53HK512

Stem bark Leaves

L K, L

Dc Dc

4 4

4 4

53HK5115

Papatara (P) KoloKolo (M) Kulo Kulo (P) Gbénin (M) Bani (P)

Leaves/stem bark

Dc/Mc

4/3

7

Pterocarpus santalinoides L'Hérit. ex DC. HymenocardiaacidaTul.

53HK516

Djegou (P)

Leaves

K,S,L, Ma, N D,L

Dc

4

4

62HK530

Pellitoro(P)

Leaves/stembark

L,T,K,S,D

Dc

7/6

13

IC50 ¼80.11 mg/ml on 3D7 (Traoré et al., 2008), IC50 ¼4.4 μg/ml on K1 (VonthronSenecheau et al., 2003), IC50 ¼ 1.31 μg/ml on FcB1(Benoit-Vical et al., 1999) IC50 ¼ 0.93 μg/ml on F32 (Ballin et al., 2002), IC50 ¼ 1.31 μg/ml on FcB1 (Benoit-Vical et al., 1999) IC50 ¼ 0.7 -1.18 mg /ml on FCB1 (Benoit et al., (1996)), IC50 4 25 mg /ml on W2 (Ancolio et al., 2002)

IC50 4 25 mg /ml on W2 (Ancolio et al., 2002), IC50 ¼4.45–6.77 mg /ml on W2 (Fiot et al., 2006)

IC50 ¼ 1mg/ml on W2 (Sanon et al., 2003) IC50 ¼55 mg/ml on FcM29 (Mbatchi et al., 2006)

IC50 ¼ 7.1–55.5 mg /ml on FcM29 (Banzouzi et al., 2002), IC50 ¼ 4.8 mg /ml on GHA (Muganza et al., 2012)

IC50 450 mg/ml on W2 (Kaou et al., 2008) Ch¼ 23.5% on P. berghei (Saidu et al., 2000), IC50 45 mg /ml on K1, Kamanzi et al., 2004

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

37HK441

6.9 mg /ml on K1 (Vonthron-Senecheau et al., 2003), IC50 45mg /ml on K1 (Kamanzi et al., 2004)

1149

1150

Table 2 (continued ) Botanical name

Voucher specimen no.

Local name (ethnic)

Plant part

Source

Preparation form

Hypericaceae (3)

Harungana madagascariensis Hook. f.

63HK554

Sungbala (M) Wobé (S)

Leaves/stem bark

L,D,C,S

Dc, Mc,inf

Psorospermum febrifugum Hochr.

63HK555

Leaves/stem bark

K,S

Vismia guineensis (L.) Choisy

63HK556

Kétidjankouma (M) Kéti (P) Wobè siné (S)

Leaves/stem bark

64HK560

Kurangbayi (M)

Lauraceae(1)

Rhaphiostylis beninensis (Hook.f.) Planch. Persea americana Mill.

68HK563

Lecythidaceae(1) Loganiaceae(1) Lythraceae(1) Malvaceae(1) Meliaceae(4)

Icacinaceae(1)

Mimosaceae (5)

Citations per plant part

Citations per species

Previous reports of antiplasmodial activity

10/17

27

IC50 ¼3.6 mg /ml on K1 (Lenta et al., 2007), IC50 ¼ 43.70 mg /ml on W2 (Muthaura et al., 2007), IC50 ¼9.6 mg /ml on K1 (Muganza et al., 2012)

Dc

7/8

15

L,D,C,F, Ma

Dc

13/25

38

Leaves

K,S

Dc

4

4

Piya (P), Piyaa (M)

Leaves

L,K,S

Dc

10

10

Napoleonaea leonensis Hutch. & Dalz. 69HK568 Anthocleista nobilis G. Don 74HK570 Lawsonia inermis L. 76HK573 Hibiscus asper Hook. f. 78HK575 Azadirachta indica A. Juss. 82HK577

Koumbaboya (S) Bomon (G) Dyabè (M) Laali (S) Follèrè bourourè (P) Djoka-djo (M)

Leaves/stem bark Stem bark Leaves Leaves Leaves

D,C,F Ma, N, D,C L D,C, K

Dc Dc Dc Dc Dc

4/3 4 5 3 11

7 4 5 3 11

Carapa procera DC. Khaya senegalensis (Desr.) A. Juss.

82HK579 82HK582

Göbi (P) Dyala (M), Kayi (P)

Leaves Stem bark

L,T, K,S,L,T

Dc Dc

7 7

7 7

Trichilia emetica Vahl

82HK583

Sulafinsan (M)

Stem bark

K, Ma, N Dc

8

8

Albizia zygia (DC.) J. F. Macbr.

86HK587

Stem bark

Ma, N, L

Dc

6

6

Dichrostachys cinerea (L.) Wight & Arn. Entada africana Guill. & Perr.

86HK590

Gbanha laakpea kpea (G) Marônaïe (P) Bullé beté (P)

Leaves

L,D,C

Dc

7

7

86HK592

Djalankambaa (M)

Stembark

K,S

Dc

5

5

Parkia biglobosa (Jacq.) Benth.

86HK596

Néri (S) Nété (P) Nédé (M) Leaves/stem bark

L,T,K,S,C, Dc/Mc F,

13/18

31

Moraceae (5)

Prosopis africana (Guill. & Perr.) Taub. 86HK597 Ficus capensis Taub. 88HK600

Tyèlen (P) Djibè (P)

Stem bark Leaves/stem bark

L,T L,T

Dc Dc

5 3/4

5 7

Musaceae (1) Myrtaceae (1) Ochnaceae (1) Olacaceae (1)

Ficus ovata Vahl Ficus platiphylla Del. Ficus vallis-choudae Del. Musanga cercopioides R. Br. Musa paradisiaca L. Syzygium guineense (Willd.) DC. Lophira alata Banks ex Gaertn.f. Ximenia americana L.

Nonko (P) Deguidegui (S) Djibè Ghiigneka (P) Ounjo (M) Banana (P) Kadjö (P) Malanga P) Mana (M) Banin (M) Thiakoulè (P)

Stem bark Leaves Root bark Leaves Leave/stem bark Leaves Leaves/stem bark Leaves

L,T D,C L K,Ma D,C,F L,T D,C,F K

Dc Dc Dc Dc Dc Dc Dc Dc

4 3 4 5 22/1 7 20/2 5

4 3 4 5 23 7 22 5

88HK607 88HK609 88HK612 88HK616 90HK622 93HK623 96HK628 98HK633

IC50 ¼17 mg/ml on FcM29 (Menan et al., 2006), 4.73 mg/ml on Dd2 (Zofou et al., 2011), IC50 ¼2 mg/ml on NF54(François et al., 1999), IC50 ¼ 10.03 mg/ml on 3D7 (Jansen et al., 2010)

IC50 410 mg /ml on FCR-3 (Ruiza et al., 2011)

IC50 ¼ 5.8-8.5 mg /ml on 3D7 (El Tahir et al., 1999), Kirira et al. 2006 IC50 ¼ 47 mg /ml on 3D7 (El Tahir et al., 1999) IC50 ¼3.61 mg /ml on K1 (Kamanzi et al., 2004), IC50 ¼59.2 mg /ml strain 3D7 (Bero et al., 2009) Lenta et al., 2007 IC50 45 mg /ml strain K1(Kamanzi et al., 2004) IC50 45 mg /ml on K1(Kamanzi et al., 2004) IC50 ¼33 mg/ml on FcM29 (Menan et al., 2006), IC50 ¼56.2 mg/ml on NK-65 (Builders et al., 2011) 45.3 7 5.1 mg/ml on FcB1 (Zihiri et al., 2005)

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

Family (total no. of species)

IC50 ¼0.8–6.25 mg /ml on FCB1(Benoit et al., (1996)), Ch¼ 36.49% (Gathirwa et al., 2007) Phyllanthaceae (2)

Poaceae (1) Rubiaceae (10)

Sapindaceae (1)

107HK634

Métè (S) Keeri (p) Tiho (G) Leaves

Dc

8

8

Stem bark Leaves Leaves

Ma,N, K,S S,K L N,D

107HK635 112HK640 121HK652

Somo (M) Pouki (P) Mèkhèmèkhengni (S)

Dc Dc Dc

4 1 6

4 1 6

121HK655

Mekia (S)

Leaves/stem bark

D,C,F

Dc,Mc

16/12

24

Gardenia ternifolia Schumach. & 121HK658 Thonn. Geophila obvallata (Schumach.) F.Didr 121HK659 Mitragyna inermis (Willd.) O. Ktze. 121HK663

Bössè (P)

Root bark

L,T

Dc

7

7

Goivelegui (T) Djiou (M)

Leaves Leaves

Ma K,S

Dc Dc

5 8

5 8

Morinda geminata DC. Mytragina stypilosa (DC.) O.Ktze. Nauclea latifolia Sm.

Wanda (P) Böö (G) pôpô (p) Dundakhè (S)

Root bark L,T Dc Root bark N, Dc Leaves/stem bark/ D, C, F, L, Dc root bark K

9 11 16/9/6

9 11 31

Nauclea pobeguinii (Pobég. &.Pellegr.) 121HK672

Dundunkè thiaghöl (P)

Stem bark

L,D,K,S

Mc

17

17

Pavetta crassipes K. Schum.

121HK675

Pémpereman i(M)

Leaves

K, S

Dc

5

5

Citrus aurantium L. Citrus medica L. Zanthoxylum zanthoxyloides (Lam.) Zepernick & Timber Paullinia pinnata L.

122HK670 122HK675 122HK680

Lèmounnè (P) Cathiou Bulèbarkelé (P)

Leaves Leaves Stem bark

L L,C D

Dc Dc dc

4 3 2

4 3 2

125HK684

Leaves

L, D,

Dc

7

7

Stem bark

K

Dc

2

2

121HK66 121HK668 122HK671

126HK688

Scrophulariaceae (1)

Butyrospermum parkii (G. Don) Kotschy Scoparia dulcis L.

Kölli djowi (P) Guinè birimawouri (S) Karé (P)

127HK690

Lew-nyukö (P), Seréré (S)

Whole plant

L, T, D,C

Dc

9

9

Simaroubaceae (1)

Harrisonia abyssinica Oliv.

128HK693

Nyalekpagpou (G) Ghabbou (p)

Stem bark

Ma

Dc

3

3

Sterculiaceae (1) Tiliaceae (1) Ulmaceae (1)

Cola cordifolia (Cav.)R.Br. Grewia villosa Willd. Trema guineensis (Schumach. & Thonn.) Gmelia arborea L.

131HK696 134HK699 136HK701

Goumbanbhè (P) Billi béédi (P) Tieouki (p)

Leaves Stem bark Leaves

L L, T L

Dc Dc Dc

1 7 4

1 7 4

138HK704

Allumette wouri (S)

Leaves

D, C, F

Dc

6

6

Lantana camara L.

138HK705

Tagania (S) Bombomtia (P) Leaves

L, D, C, F, Dc Ma

11

11

Lippia chevalieri Moldenke Vitex doniana Sweet

138HK706 138HK710

Leaves Leaves

K, S D,C

Dc Dc

5 3

5 3

Cissus aralioides (Welw.ex Bak.) Planch. Aframomum melegueta K.Schum.

140HK713

Kanimbadjon (M) Kouikoui (S) Boummè (P) Fafaru (P)

Root

L,T

Dc

4

4

141HK716

Kpoguiyèn (G),gögö (P)

Root

L,Ma,N,T Dc

9

9

Sapotaceae (1)

Verbenaceae (4)

Vitaceae(1) Zinziberaceae(1)

Ch¼ 70.97% (Elufioye and Agbedahunsi, 2004), IC50 ¼ 56.85 on 3D7 (Jansen et al., 2010) IC50 ¼ 1.07 mg g/ml on W2 (Charles et al., 2010) IC50 ¼4.32 mg /ml on W2 (Traore-Keita et al., 2000)

IC50 ¼15 mg/ml on FcM29( Menan et al., 2006), IC50 ¼8.9 mg/ml on FcB1(Zihiri et al., 2005) IC50 ¼32mg/ml on GHA (Mesia et al., 2010) IC50 o4 mg /ml on W2 (Sanon et al., 2003)

IC50 ¼0.018mg/ml on 3D7 (Kassim et al., 2005)

IC50 ¼ 6.6 mg /ml on FCR-3 (Ruiza et al., 2011) 35.7% Ch on FcB1 (Lacroix et al., 2011), IC50 45mg /ml on K1 (Kamanzi et al., 2004)

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

Rutaceae (3)

Margaritaria discoidea (Baill.) Webster Uapaca togoensis Pax Pennisetum pedicellatum Trin. Craterispermum laurinum (Poir.) Benth. Crossopteryx febrifuga (Afzel. ex G. Don) Benth.

IC50 ¼ 95.5 mg g/ml on 3D7 (Kantamreddi and Wright, 2012) IC50 ¼5.7 mg/ml on W2 (Jonville et al., 2008), IC50 ¼19 mg/ml on 3D7 (Kamaraj et al., 2012)

1151

P, pular; M, malinké; S, sussu; G, Guerzé; L, Labé; T, Tougué; Ma, Macenta; N, N’Zerekoré; F, Forecariah; D, Dubréka; C, Coyah; K, Kankan; S, Siguiri; Ch, chemosuppression. Activities were assessed on different strains, among which are chloroquine sensitive: FCK2 GHA, NF54, 3D7, F32, FCR3, NK-65; chloroquine resistant: FCB1, W2, FCM29, Dd2; and multidrug resistant: K1.

1152

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153

papaya, Ananas comosus, Cassia siamea, Gardenia ternifolia, Holarrhena floribunda, Mangifera indica, Mitragyna inermis, Newbouldia laevis, Spondias mombin, Uvaria chamae, Xylopia aethiopica (Koudouvo et al., 2011); in Uganda: Musa paradisiaca, Carica papaya, Azadirachta indica (Stangeland et al., 2011); in Peru: Scoparia dulcis, Anacardium occidentale, Spondias mombin, Citrus medica, Carica papaya, Persea americana (Ruiza et al., 2011); in India: Lantana camara (Kamaraj et al., 2012). This high consensus among users in different countries and continents reflects the significance of medicinal plants to the people and the fact that same plants are used by different communities for the same purpose could possibly indicate their effectiveness. Previous laboratory investigations provide evidence to support the antiplasmodial activity of numerous plant species (Table 2). E.g., the extract of Terminalia macroptera was reported to inhibit the strain W2 with an IC50 value of 1 mg/ml versus 0.185 mg/ ml for chloroquine (Sanon et al., 2003), and that of Vismia guineensis exhibited an IC50 of 2 mg/ml on strain NF54 (François et al., 1999). Noteworthy, the in vitro antiplasmodial activity of other plant species from these two genera was also reported: the IC50 values of extracts of Terminalia glaucescens and T. mollis were 2.34–3.5 and 11.7–33.5 mg/ml, respectively (Mustofa et al., 2000; Okpekon et al., 2004; Muganga et al., 2010); and those of Vismia orientalis and V. laurentii were 1.01–9.7 mg/ml on strain K1 (artemisinin control ¼0.0011 mg/ml ) and 1.42 mg/ml on strain W2 (chloroquine control ¼0.13 μM), respectively (Mbwambo et al., 2004; Noungoue et al., 2009). Moreover, the traditional antimalarial use of some plant species is also supported by the isolation of their active principles. Among these, ellagic acid from Alchornea cordifolia exhibited an IC50 value of 0.11 mg/ml on P. falciparum strain FcM29 (chloroquine control: 0.210 mg/ml) (Banzouzi et al., 2002), fagaronine from Fagara zanthoxyloides possessed an IC50 value of 0.018 mg/ml on P. falciparum strain NF54, vismione H from Vismia guineensis an IC50 of 0.088 mg/ml on strain NF54 (François et al., 1999), and the alkaloid strictosamide from Nauclea spp. (Abreu and Pereira, 2001; Dhooghe et al., 2008; Mesia et al., 2010). However, only few clinical studies have been conducted to validate the efficacy of traditional antimalarial treatments and to assess their safety. Clinical trials with Cochlospermum planchonii and Nauclea pobeguinii showed that these two plant species can be considered as promising candidates for the development of herbal medicines in the treatment of uncomplicated falciparum malaria (Benoit-Vical et al., 2003; Mesia et al., 2012). Ultimately, it is important to validate all claims of therapeutic efficacy and safety of the other traditional recipes by carrying out biological, pharmacological and toxicological studies. 3.4. Plant parts used and mode of preparation The leaves were the most frequently used part (80 species), followed by stem bark (38 species), and roots (four species). Similar results were described in other studies (Asase et al., 2005; Koudouvo et al., 2011; Yetein et al., 2013). Most traditional healers argued the use of leaves instead of roots or stem-bark in order to preserve the species. The remedies consisted of one plant (13%) or a combination of two plants (25%), three plants (29%) or more than three plants (33%). Such combinations can exert a synergistic action against several associated symptoms of malaria, and this synergy has an impact on patient’s recovery (Jansen et al., 2010). The remedies were prepared mostly as decoction (111 species), followed by maceration (seven species). Only one species was prepared by infusion. For decoctions, quantities are not measured accurately and the extracts are made on a large scale by boiling plant material with water in large pots over a fire. In all instances the amount administered to the patient is not very accurately measured, and the dosage is very difficult to estimate.

The amounts used are not standardized and depend on the experience of individual traditional healers. The preparations were administered orally and sometimes topically as steam baths. Oral doses were variable and administered according to the age of the patient. They varied between 100 ml and 400 ml for adults, and 30–90 ml for children. These doses were taken one to three times a day for a period of 5–10 days or until the disappearance of the symptoms. The average cost of a dosage for treatment of malaria with the herbal remedies ranged from 0.5 to 1 USD. Although unregulated harvests could on the long term threaten the existence of overexploited species, mainly if the roots are targeted, all the cited plant parts were intensively harvested from plants growing in the wild. 4. Conclusion The present study showed that traditional healers in Guinea have a consistent knowledge of antimalarial plants. Due to the increasing prevalence of malaria among the population there is an urgent need to scientifically investigate and rationalize the use of these traditional remedies which could represent accessible alternative medicines. Further research should be done on these plant species in order to assess their in vitro and/or in vivo antiplasmodial and antimalarial potency. References Abreu, P., Pereira, A., 2001. New indole alkaloids from Sarcocephalus latifolius. Nat. Prod. Lett. 15, 43–48. Adebayo, J.O., Krettli, A.U., 2011. Potential antimalarials from Nigerian plants: a review. J. Ethnopharmacol. 133, 289–302. Ajaiyeoba, E.O., Abiodun, O.O., Falade, M.O., Ogbole, N.O., Ashidi, J.S., Happi, C.T., Akinboye, D.O., 2006. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine 13, 295–298. Ancolio, C., Azas, N., Mahiou, V., Ollivier, E., Di Giorgio, C., Keita, A., Timon-David, P., Balansard, G., 2002. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother. Res. 16, 646–649. Anonymous. Guinea profile demographics 2013. www.indexmundi.com/guinea/ demographicsprofile.htmlht (Accessed on 2 April 2013). Asase, A., Akwetey, A.G., Achel, D.G., 2010. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. J. Ethnopharmacol. 129, 367–376. Asase, A., Oppong-Mensah, G., 2009. Traditional antimalarial phytotherapy remedies in herbal markets in southern Ghana. J. Ethnopharmacol. 126, 492–499. Asase, A., Oteng-YeboahA., A., Odamtten, G.T., Simmonds, S.M.J., 2005. Ethnobotanical study of some Ghanaian anti-malarial plants. J. Ethnopharmacol. 99, 273–279. Ballin, N.Z., Traore, M., Tinto, H., Sittie, A., Molgaard, P., Olsen, C.E., Kharazmi, A., Christensen, S.B., 2002. Antiplasmodial compounds from Cochlospermum tinctorium. J. Nat. Prod. 65, 1325–1327. Banzouzi, J.-T., Prado, R., Menan, H., Valentin, A., Roumestan, C., Mallie, M., Pelissier, Y., Blache, Y., 2002. In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J. Ethnopharmacol. 81, 399–401. Benoit-Vical, F., Valentin, A., Da, B., Dakuyo, Z., Descamps, L., Mallié, M., 2003. N’Dribala (Cochlospermum planchonii) versus chloroquine for treatment of uncomplicated Plasmodium falciparum malaria. J. Ethnopharmacol. 89, 111–114. Benoit-Vical, F., Valentin, A., Mallie, M., Bastide, J.M., Bessiere, J.M., 1999. In vitro antimalarial activity and cytotoxicity of Cochlospermum tinctorium and C. planchonii leaf extracts and essential oils. Planta Medica 65, 378–381. Benoit, F., Valentin, A., Pelissier, Y., Diafouka, F., Marion, C., Kone-Bamba, D., Kone, M., Mallie, M., Yapo, A., Bastide, J.M., 1996. In vitro antimalarial activity of vegetal extracts used in West African traditional medicine. Am. J. Trop. Med. Hyg. 54, 67–71. Bero, J., Ganfon, H., Jonville, M-C., Frédérich, M., Gbaguidi, F., De Mol, P., Moudachirou, M, Quetin-Leclercq, J., 2009. In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. J. Ethnopharmacol. 122, 439–444. Bero, J., Hannaert, V., Chataigné, G., Hérent, M.-F., Quetin-Leclercq, J., 2011. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J. Ethnopharmacol. 137, 998–1002. Bhat, G.P., Surolia, N., 2001. In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. Am. J. Trop. Med. Hyg. 65, 304–308. Builders, M., Wannang, N., Aguiyi, J., 2011. Antiplasmodial activities of Parkia biglobosa leaves: in vivo and in vitro studies. Ann. Biol. Res. 2 (4), 8–20.

M.S. Traore et al. / Journal of Ethnopharmacology 150 (2013) 1145–1153 Burki, T., 2009. Artemisinin resistance could endanger fight against malaria. Lancet Infecti. Dis. 9, 213. Charles, O.O., Midiwo, J.O., Owuor, P.O., 2010. Antiplasmodial and larvicidal effects of surface exudates of Gardenia ternifolia Aerial Parts. Res. J. Pharmacol. 4 (2), 45–50. Dhooghe, L., Mesia, K., Kohtala, E., Tona, L., Pieters, L., Vlietinck, A.J., Apers, S., 2008. Development and validation of an HPLC-method for the determination of alkaloids in the stem bark extract of Nauclea pobeguinii. Talanta 15, 462–468. Diallo, A., Traoré, M.S., Keita, S.K., Baldé, M.A., Keita, A., Camara, M., Van Miert, S., Pieters, L., Baldé, A.M., 2012. Management of diabetes in Guinean traditional medicine: an ethnobotanical investigation in the coastal lowlands. J. Ethnopharmacol. 114, 353–361. Dike, I.P., Obembe, O.O., Adebiyi, F.E., 2012. Ethnobotanical survey for potential antimalarial plants in south-western Nigeria. J. Ethnopharmacol. 144, 618–626. Egan, T.J., 2009. Artemisinin-resistant Plasmodium falciparum: can the genie be put back in the bottle? Future Microbiol. 4, 637–639. El Tahir, A., Satti, G.M.H., Khalid, S.A., 1999. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J. Ethnopharmacol. 64, 227–233. Elufioye, T.O, Agbedahunsi., J.M., 2004. Antimalarial activities of Tithonia diversifolia (Asteraceae) and Crossopteryx febrifuga (Rubiaceae) on mice in vivo. J. Ethnopharmacol. 93, 167–171. EDS-MICS: Enquête Démographique Et De Santé Et à Indicateurs Multiples. Rapport préliminaire EDS Guinée 2012. Fiot, J., Sanon, S., Azas, N., Mahiou, V., Jansen, O., Angenot, L., Balansard, G., Ollivier, E., 2006. Phytochemical and pharmacological study of roots and leaves of Guiera senegalensis J.F. Gmel (Combretaceae). J. Ethnopharmacol. 106, 173–178. François, G., Steenackers, T., Aké –Assi, L., Steglich, W., Lamottke, K., Holenz, J., Bringmann, G., 1999. Vismione H and structurally related anthranoid compounds of natural and synthetic origin as promising drugs against the human malaria parasite Plasmodium falciparum -activity relationships. Parasitol. Res. 85, 582–588. Gardella, F., Assi, S., Simon, F., Bogreau, H., Eggelte, T., Ba.,Foumane, V., Henry, M.-C., Kientega, P.T., Basco, L., Trape, J-F., Lalou, R., Martelloni, M., Desbordes, M., Baragatti, M., Briolant, S., Almeras, L., Pradines, B., Fusai, T., Rogier, C., 2008. Antimalarial drug use in general populations of tropical Africa. Malar. J. 7, 124. Gathirwa, J.W., Rukunga, G.M., Njagi, E.N.M., Omar, S.A., Guantai, A.N., Mwitari, C.N., Kimani, P.G., Kirira, C.W., Tolo, P.G., Ndunda, F.M., Ndiege, I.O., T.N., 2007. In vitro antiplasmodial and in vivo anti-malarial activity of some plants traditionally used for the treatment of malaria by the Meru community in Kenya. J. Nat. Med. 61, 261–268. Jansen, O., Angenot, L., Tits, M., Nicolas, J.P., De Mol, P., Nikiéma, J.-B., Frédérich, M., 2010. Evaluation of 13 selected medicinal plants from Burkina Faso for their antiplasmodial properties. J. Ethnopharmacol. 130, 143–150. Jonville, M.C, Kodja, H., Humeau, L., Fournel, J., De Mol, P., Cao, M., Angenot, L., Frédérich, M., 2008. Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. J. Ethnopharmacol. 120, 382–386. Kamaraj, C., Kaushik, N.K., Rahuman, A.A., Mohanakrishnan, D., Bagavan, A., Elango, G., Zahir, A.A., Santhoshkumar, T., Marimuthu, S., Jayaseelan, C., Kirthi, A.V., Rajakumara, G., Velayutham, K., Sahal, D., 2012. Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J. Ethnopharmacol. 141, 796–802. Kamanzi, K., Atindehou, Schmid C., Brun, R., Koné, M.W., Traore, D., 2004. Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d’Ivoire. J. Ethnopharmacol. 90, 221–227. Kantamreddi, V.S., Wright, C.W., 2012. screening indian plant species for antiplasmodial properties ethnopharmacological compared with random selection. Phytother. Res. 26, 1793–1799. Kaou, A.M., Mahiou-Leddet, V., Hutter, S., Aïınouddine, S., Hassani, S., Yahaya, I., Azas, N., Ollivier, E., 2008. Antimalarial activity of crude extracts from nine African medicinal plants. J. Ethnopharmacol. 116, 74–83. Kassim, O.O., Loyevsky, M., Elliott, B., Geall, A., Amonoo, H., Gordeuk, V.R., 2005. Effects of root extracts of Fagara zanthoxyloides on the in vitro growth and stage distribution of Plasmodium falciparum. Antimicrob. Agents Chemother. 49, 264–268. Kirira, P.G., Rukunga, G.M., Wanyonyi, A.W., Muregi, F.M., Gathirwa, J.W., Muthaura, C.N., Omar, S.A., Tolo, F., Mungai, G.M., Ndiege, I.O., 2006. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi Districts of Kenya. J. Ethnopharmacol. 106, 403–407. Koudouvo, K., Karoua, D.S., Kokou, K., Essien, K., Aklikokou, K., Glitho, I.A., Simpore, J., Sanogo, R., De Souza, C., Gbeassor, M., 2011. An ethnobotanical study of antimalarial plants in Togo maritime region. J. Ethnopharmacol. 134 (2011), 183–190. Lacroix, D., Prado, S., Kamoga, D., Kasenene, J., Namukobe, J., Krief, S., Dumontete, V., Mouraya, E., Bodo, B., Brunois, F., 2011. Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda. J. Ethnopharmacol. 133, 850–855. Lenta, B.N., Ngouela, S., Boyom, F.F., Tantangmo, F., Feuya Tchouya, G.R., Tsamo, E.J., Rosenthal, P.J., Connolly, J.D., 2007. Antiplasmodial activity of some constituents of the root bark of Harungana madagascariensis LAM. (Hypericaceae). Chem. Pharm. Bull. 55, 464–467. Magassouba, F.B., Diallo, A., Kouyaté, M., Mara, F., Mara, O., Bangoura, O., Camara, A., Traoré, S., Diallo, A.K., Zaoro, M., Lamah, K., Diallo, S., Camara, G., Traoré, S., Keita, A., Camara, M.K, Barry, R., Keita, K., Oularé, M.S., Barry, M., Donzo, K., Camara, D., Vanden Berghe, Totté, J., Pieters, L., Vlietinck, A.J., Baldé, A.M., 2007.

1153

Ethnobotanical survey and antibacterial activity of some plants used in Guinean traditional medicine. J. Ethnopharmacol. 114, 44–53. Mbatchi, S.F., Mbatchi, B., Banzouzi, J.T., Bansimba, T., Nsonde Ntandou, G.F., Ouamba, A., Berry, J.-M., Benoit-Vical, F., 2006. In vitro antiplasmodial activity of 18 plants used in Congo Brazzaville traditional medicine. J. Ethnopharmacol. 104, 168–174. Mbwambo, Z.H., Apers, S., Moshi, M.J., Kapingu, M.C., Van Miert, S., Claeys, M., Brun, R., Cos, P., Pieters, L., Vlietinck, A., 2004. Anthranoid compounds with antiprotozoal activity from Vismia orientalis. Planta Medica 70, 706–710. Menan, H., Banzouzi, J.-T., Hocquette, A., Pelissier, Y., Blache, Y., Kone, M., Mallie, M., Aké-Assi, L., Valentin, A., 2006. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J. Ethnopharmacol. 105, 131–136. Mesfin, A., Giday, M., Animut, A., Teklehaymanot, T., 2012. Ethnobotanical study of antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J. Ethnopharmacol. 139, 221–227. Mesia, K., Tona, L., Mampunza, M.M., Ntamabyaliro, N., Muanda, T., Muyembe, T., Musuamba, T., Mets, T., Cimanga, K., Totte, J., Pieters, L., Vlietinck, A.J., 2012. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem bark in human adult volunteers with diagnosed uncomplicated falciparum malaria. Part 2: a clinical phase IIB trial. Planta Medica 78, 853–860. Mesia, K., Cimanga, R.K., Dhooghe, L., Cos, P., Apers, S., Totté, J., Tona, G.L., Pieters, L., Vlietinck, A.J., Maes, L., 2010. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J. Ethnopharmacol. 131, 10–16. Muganza, M.D., Fruth, B.I., Nzunzu Lami, J., Mesia, G.K, Kambu, O.K, Tona, G.L., Cimanga, K.R., Cos, P., Maes, L., Apers, S., Pieters, L., 2012. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. J. Ethnopharmacol. 141, 301–308. Muganga, R., Angenot, L., Tits, M., Fréderich, M., 2010. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J. Ethnopharmacol. 128, 52–57. Mustofa, Valentin A., Benoît-Vical, F., Pellisier, Y., Kone-Bamba, D., Mallié, M., 2000. Antiplasmodial activity of plant extracts used in West African traditional medicine. J. Ethnopharmacol. 73, 145–151. Muthaura, C.N., Rukunga, G.M., Chhabra, S.C., Omar, S.A., Guantai, A.N., Gathirwa, J.W., Tolo, F.M., Mwitari, P.G., Keter, L.K., Kirira, P.G., Kimani, C.W., Mungai, G.M., Njagi, E.N.M., 2007. Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. J. Ethnopharmacol. 112, 545–555. Nguta, J.M., Mbaria, J.M, Gakuya, D.W., Gathumbi, P.K., Kiama, S.G., 2010. Traditional antimalarial phytotherapy remedies used by the south coast community, Kenya. J. Ethnopharmacol. 131, 256–267. Noungoue, D.T., Chaabi, M., Ngouela, S., Antheaume, C., Boyom, F.F., Gut, J., Rosenthal, P.J., Lobstein, A., Tsamo, E., 2009. Antimalarial compounds from the stem bark of Vismia laurentii. Z. Naturforschung C 64, 210–214. Okpekon, T., Yolou, S., Gleye, C., Roblot, F., Loiseau, P., Bories, C., Grellier, P., Frappier, F., Laurens, A., Hocquemiller, R., 2004. Antiparasitic activities of medicinal plants used in Ivory Coast. J. Ethnopharmacol. 90, 91–97. Okokon, J.E., Ita, B.N., Udokpoh, A.E., 2006. The in-vivo antimalarial activities of Uvaria chamae and Hippocratea africana. Ann. Trop. Med. Parasitol. 100, 585–590. Ruiza, L., Macoa, M., Cobosa, M., Luz, A., Choquevilcab, G., Roumy, V., 2011. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J. Ethnopharmacol. 133, 917–921. Saidu, K., Onah, J., Orisadipe, A., Olusola, A., Wambebe, C., Gamaniel, K., 2000. Antiplasmodial, analgesic, and anti-inflammatory activities of the aqueous extract of the stem bark of Erythrina senegalensis. J. Ethnopharmacol. 71, 275–280. Sanon, S., Ollivier, E., Azas, N., Mahiou, V., Gasquet, M., Ouattara, C.T., Nebie, I., Traore, A.S., Esposito, F., Balansard, G., Timon-David, P., Fumoux, F., 2003. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J. Ethnopharmacol. 86, 143–147. Stangeland, T., Paul, E.A., Katuura, E., Lye, E.A., 2011. Plants used to treat malaria in Nyakayojo sub-country, western Uganda. J. Ethnopharmacol. 137, 154–166. Traoré, M., Diallo, A., Nikièma, J.B., Tinto, H., Dakuyo, Z.P., Ouèdraogo, J.B., Guissou, I.P., Guiguemdé, T.R., 2008. In vitro and in vivo antiplasmodial activity of Saye, an herbal remedy used in Burkina Faso traditional medicine. Phytother. Res. 22, 550–551. Traore-Keita, F., Gasquet, M., Di Giorgio, C., Ollivier, E., Delmas, F., Keita, A., Doumbo, O., Balansard, G., Timon-David, P., 2000. Antimalarial activity of four plants used in traditional medicine in Mali. Phytother. Res. 14, 45–47. Vonthron-Senecheau, C., Weniger, B., Ouattara, M., Bi, F.T., Kamenan, A., Lobstein, A., Brun, R., Anton, R., 2003. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J. Ethnopharmacol. 87, 221–225. WHO, 2011. World Malaria Report 2011. WHO, Geneva (Switzerland). Yetein, M.H., Houessou, L.G., Lougbégnon, T.O., Teka, O., Tente, B., 2013. Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). J. Ethnopharmacol. 146, 154–163. Zirihi, G.N., Mambu, L., Guédé-Guina, F., Bodo, B., Grellier, P., 2005. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J. Ethnopharmacol. 98, 281–285. Zofou D., Tene M., Moses N., NGemenya N.M., Tane P., and Titanji P.K.V., 2011. In vitro Antiplasmodial activity and cytotoxicit y of extracts of selected medicinal plants used by traditional healers of western Cameroon. Malar. Res. Treat. Article ID 561342, 6 pages.