Gauge & Higgs boson summary table

Gauge & Higgs boson summary table

31 SUMMARY TABLES OF PARTICLE PROPERTIES Extracted from the Particle Listings of the Review of Particle Physics S. Eidelman et al., Phys. Lett. B 5...

2MB Sizes 0 Downloads 23 Views

31

SUMMARY TABLES OF PARTICLE PROPERTIES Extracted from the Particle Listings of the

Review of Particle Physics

S. Eidelman et al., Phys. Lett. B 592, 1 (2004) Available at http://pdg.lbl.gov Particle Data Group Authors:

S. Eidelman, K.G. Hayes, K.A. Olive, M. Aguilar-Benitez,C. Amsler, D. Asner, K.S. Babu, R.M. Barnett, J. Beringer, P.R. Burchat, C.D. Carone, C. Caso, G. Conforto, O. Dahl, G. D'Ambrosio, M. Doser, J.L. Feng, T. Gherghetta, L. Gibbons, M. Goodman, C. Grab, D.E. Groom, A. Gurtu, K. Hagiwara, J.J. Hernandez-Rey, K. Hikasa, K. Honscheid, H. Jawahery, C. Kolda, Y. Kwon, M.L. Mangano, A.V. Manohar, J. March-Russell, A. Masoni, R. Miquel, K. Monig, H. Murayama, K. Nakamura, S. Navas, L. Pape, C. Patrignani, A. Piepke, G. Raelt, M. Roos, M. Tanabashi, J. Terning, N.A. Tornqvist, T.G. Trippe, P. Vogel, C.G. Wohl, R.L. Workman, W.-M. Yao, P.A. Zyla

Technical Associates:

B. Armstrong, P.S. Gee, G. Harper, K.S. Lugovsky, S.B. Lugovsky, V.S. Lugovsky, A. Rom

Other authors who have made substantial contributions to the reviews:

M. Artuso, E. Barberio, M. Battaglia, H. Bichsel, O. Biebel, P. Bloch, R.N. Cahn, D. Casper, A. Cattai, R.S. Chivukula, G. Cowan, T. Damour, K. Desler, M.A. Dobbs, M. Drees, A. Edwards, D.A. Edwards, V.D. Elvira, J. Erler, V.V. Ezhela, W. Fetscher, B.D. Fields, B. Foster, D. Froidevaux, M. Fukugita, T.K. Gaisser, L. Garren, H.-J. Gerber, G. Gerbier, F.J. Gilman, H.E. Haber, C. Hagmann, J. Hewett, I. Hinchlie, C.J. Hogan, G. Hohler, P. Igo-Kemenes, J.D. Jackson, K.F. Johnson, D. Karlen, B. Kayser, D. Kirkby, S.R. Klein, K. Kleinknecht, I.G. Knowles, P. Kreitz, Yu.V. Kuyanov, O. Lahav, P. Langacker, A. Liddle, L. Littenberg, D.M. Manley, A.D. Martin, M. Narain, P. Nason, Y. Nir, J.A. Peacock, H.R. Quinn, S. Raby, B.N. Ratcli, E.A. Razuvaev, B. Renk, G. Rolandi, M.T. Ronan, L.J. Rosenberg, C.T. Sachrajda, Y. Sakai, A.I. Sanda, S. Sarkar, M. Schmitt, O. Schneider, D. Scott, W.G. Seligman, M.H. Shaevitz, T. Sjostrand, G.F. Smoot, S. Spanier, H. Spieler, N.J.C. Spooner, M. Srednicki, A. Stahl, T. Stanev, M. Suzuki, N.P. Tkachenko, G.H. Trilling, G. Valencia, K. van Bibber, M.G. Vincter, D.R. Ward, B.R. Webber, M. Whalley, L. Wolfenstein, J. Womersley, C.L. Woody, O.V. Zenin, R.-Y. Zhu c Regents of the University of California

(Approximate closing date for data: January 1, 2004)

GAUGE AND HIGGS BOSONS Mass m < 6  10;17 eV Charge q < 5  10;30 e Mean life  = Stable

g

I(J PC ) = 0,1(1 ; ; )

I(J P ) = 0(1;)

or gluon

Mass m = 0 a] SU(3) color octet

W

J=1

Charge =  1 e Mass m = 80:425  0:038 GeV m Z ; m W = 10:763  0:038 GeV m W + ; m W ; = ; 0:2  0:6 GeV Full width ; = 2:124  0:041 GeV  N   = 15:70  0:35 NK = 2:20  0:19 Np = 0:92  0:14 Ncharged = 19:41  0:15

Gauge & Higgs Boson Summary Table W ; modes are charge conjugates of the modes below. W + DECAY MODES `+  e+  +  + 

hadrons

+  D +s 

cX cs invisible

Z

p Fraction (;i /;) Con dence level (MeV/c) b] (10:68  0:12) % { (10:72  0:16) % 40212 (10:57  0:22) % 40212 (10:74  0:27) % 40193 (67:96  0:35) % { < 8  10;5 95% 40212 < 1 :3  10;3 95% 40188 (33:6  2:7 ) % { (31 +13 { ; 11 ) % c ] ( 1:4  2:8 ) % {

J=1 Charge = 0 Mass m = 91:1876  0:0021 GeV d ] Full width ; = 2:4952  0:0023 GeV ;  ; ; ` + `; = 83:984  0:086 MeV b]  ;;invisible = 499:0  1:5 MeV e ] ;;hadrons =; 1744:4  2:0 MeV ;;+ ; /;; e + e ; = 1:0009  0:0028 ;  +  ; /; e + e ; = 1:0019  0:0032 f ] Average charged multiplicity  Ncharged = 21:07  0:11 Couplings to leptons g `V = ; 0:03783  0:00041 g `A = ; 0:50123  0:00026 g e = 0:53  0:09 g  = 0:502  0:017 Asymmetry parameters g ] Ae = 0:1515  0:0019 A = 0:142  0:015 A = 0:143  0:004 As = 0:90  0:09 Ac = 0:666  0:036 Ab = 0:926  0:024 Charge asymmetry (%) at Z pole `) A(0 FB = 1:71  0:10 (0 AFBu) = 4  7 s) A(0 FB = 9:8  1:1 c) A(0 FB = 7:04  0:36 (0 AFBb) = 10:01  0:17

Z DECAY MODES e+ e; + ; + ; `+ `;

invisible hadrons (uu +cc )/2 (dd +ss +bb)/3 cc bb bbbb ggg

0   ! 0 (958)     W 

 W  J = (1S)X (2S)X

c 1 (1P)X

Scale factor/ p Fraction (;i /;) Con dence level (MeV/c) ( 3:363  0:004 ) % 45594 ( 3:366  0:007 ) % 45594 ( 3:370  0:008 ) % 45559 b] ( 3:3658  0:0023) % { (20:00  0:06 ) % { (69:91  0:06 ) % { (10:1  1:1 ) % { (16:6  0:6 ) % { (11:81  0:33 ) % { (15:13  0:05 ) % { ; 4 ( 3:6  1:3 )  10 { < 1 :1 % CL=95% { ; 5 < 5 :2  10 CL=95% 45594 < 5 :1  10;5 CL=95% 45592 < 6 :5  10;4 CL=95% 45590 < 4 :2  10;5 CL=95% 45589 < 5 :2  10;5 CL=95% 45594 < 1 :0  10;5 CL=95% 45594 h ] < 7  10;5 CL=95% 10127 h ] < 8 :3  10;5 CL=95% 10101 :23 ;3 S=1.1 ( 3:51 +0 { ; 0:25 )  10 ( 1:60  0:29 )  10;3 { ( 2:9  0:7 )  10;3 {

32

Gauge & Higgs Boson Summary Table

c 2 (1P)X

< 3 :2 ( 1 :0

(1S) X + (2S) X + (3S) X (1S)X (2S)X (3S)X 0 (D /D 0 ) X  D X D  (2010) X Ds 1 (2536) X DsJ (2573) X D 0 (2629) X B 0s X B +c X anomalous  + hadrons e+ e;  + ;  + ;  `+ `;   q q 

  e   e      pe p

< 4 :4 < 1:39 < 9 :4 (20:7 (12:2 h] (11:4 ( 3 :6 ( 5 :8

LF LF LF L ,B L ,B

 10;3 CL=90%  0:5 )  10;4

{ {

 10;5 CL=95%  10;4 CL=95%  10;5 CL=95%

{ { { { { { { { { { { {

 2 :0  1 :7  1 :3  0 :8  2 :2

searched for seen searched for i ] < 3 :2 i ] < 5 :2 i ] < 5 :6 i ] < 7 :3 j ] < 6 :8 j ] < 5 :5 j ] < 3 :1 h ] < 1 :7 h ] < 9 :8 h ] < 1 :2 < 1 :8 < 1 :8

)% )% )% )  10;3 )  10;3

 10;3  10;4  10;4  10;4  10;6  10;6  10;6  10;6  10;6  10;5  10;6  10;6

CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95%

45594 45594 45559

{ {

45594 45594 45576 45576 45589 45589

Higgs Bosons | H 0 and H , Searches for H 0 Mass m > 114:4 GeV, CL = 95% H 01 in Supersymmetric Models (m H 0 89:8 GeV, CL = 95% A0 Pseudoscalar Higgs Boson in Supersymmetric Models k ] Mass m > 90:4 GeV, CL = 95% tan >1 H  Mass m > 79:3 GeV, CL = 95% See the Particle Listings for a Note giving details of Higgs Bosons.

Heavy Bosons Other Than Higgs Bosons, Searches for Additional W Bosons W 0 with standard couplings decaying to e  ,  Mass m > 786 GeV, CL = 95% WR | right-handed W Mass m > 715 GeV, CL = 90% (electroweak t) Additional Z Bosons Z 0SM with standard couplings Mass m > 690 GeV, CL = 95% (p p direct search) Mass m > 1500 GeV, CL = 95% (electroweak t) ZLR of SU(2)L SU(2)R U(1) (with gL = gR ) Mass m > 630 GeV, CL = 95% (p p direct search) Mass m > 860 GeV, CL = 95% (electroweak t) Z of SO(10) ! SU(5)U(1) (with g=e/cosW ) Mass m > 595 GeV, CL = 95% (p p direct search) Mass m > 680 GeV, CL = 95% (electroweak t) Z of E6 ! SO(10)U(1) (with g =e/cosW ) Mass m > 590 GeV, CL = 95% (p p direct search) Mass m > 350 GeV, CL = 95% (electroweak t) Z of E6 ! SU(3)SU(2)U(1)U(1) (with g =e/cosW ) Mass m > 620 GeV, CL = 95% (p p direct search) Mass m > 619 GeV, CL = 95% (electroweak t)

Scalar Leptoquarks Mass m > 242 GeV, CL = 95% (1st generation, pair prod.) Mass m > 298 GeV, CL = 95% (1st gener., single prod.) Mass m > 202 GeV, CL = 95% (2nd gener., pair prod.) Mass m > 73 GeV, CL = 95% (2nd gener., single prod.) Mass m > 148 GeV, CL = 95% (3rd gener., pair prod.) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)

Axions (A0 ) and Other Very Light Bosons, Searches for The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full Review contain a Note discussing axion searches. The best limit for the half-life of neutrinoless double beta decay with Majoron emission is > 7:2  1024 years (CL = 90%). NOTES In this Summary Table: When a quantity has \(S = : : :)" to its right, the error p on the quantity has been enlarged by the \scale factor" S, dened as S = 2 =(N ; 1), where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1:25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction. A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame. a] Theoretical value. A mass as large as a few MeV may not be precluded. b] ` indicates each type of lepton (e, , and  ), not sum over them. c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV. d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator. e] This partial width takes into account Z decays into   and any other possible undetected modes. f ] This ratio has not been corrected for the  mass. g] Here A  2gV gA/(g2V +g2A). h] The value is for the sum of the charge states or particle/antiparticle states indicated. i] See the Z Particle Listings for the  energy range used in this measurement. j] For m = (60  5) GeV. k] The limits assume no invisible decays.

33

Lepton Summary Table Decay parameters See the  Particle Listings for a note concerning  -decay parameters.   (e or ) = 0:745 0:008   (e) = 0:747 0:010   () = 0:763 0:020   (e or ) = 0:985 0:030   (e) = 0:994 0:040   () = 1:030 0:059   (e or ) = 0:013 0:020   () = 0:094 0:073  ( ) (e or ) = 0:746 0:021 ( ) (e) = 0:734 0:028 ( ) () = 0:778 0:037   ( ) = 0:993 0:022   () = 0:994 0:008   (a1 ) = 1:001 0:027   (all hadronic modes) = 0:995 0:007  + modes are charge conjugates of the modes below. \  " stands for  or  . \`" stands for or . \Neutrals" stands for  's and/or 0 's.

LEPTONS J = 21 Mass m = (548:57990945 0:00000024)  10;6 u Mass m = 0:51099892 0:00000004 MeV m + ; m ;/m < 8  10;9, CL = 90% q + + q ; e < 4  10;8 Magnetic moment  = 1:001159652187 0:000000000004  (g + ; g ; ) / gaverage = (; 0:5 2:1)  10;12 Electric dipole moment d = (0:07 0:07)  10;26 e cm Mean life  > 4:6  1026 yr, CL = 90%  ]

e

e

e

e

e

e

e

B

a

J = 21 Mass m = 0:1134289264 0:0000000030 u Mass m = 105:658369 0:000009 MeV Mean life  = (2:19703 0:00004)  10;6 s  + / ; = 1:00002 0:00008 c = 658:654 m Magnetic moment  = 1:0011659160 0:0000000006 eh/2m (g + ; g ; ) / g average = (; 2:6 1:6)  10;8 Electric dipole moment d = (3:7 3:4)  10;19 e cm Decay parameters  ]  = 0:7518 0:0026  = ; 0:007 0:013  = 0:749 0:004 P = 1:003 0:008  ] ]  P  / > 0:99682, CL = 90% 0  = 1:00 0:04 00 = 0:7 0:4  /A = (0 4)  10;3 0 /A = (0 4)  10;3

/A = (4 6)  10;3 0

/A = (2 6)  10;3  = 0:02 0:08

h

K

 ; DECAY MODES

b

e

L

g

g

g

g

; DECAY MODES Fraction (; /;) Condence level (MeV/ ) e;  100% 53  ] (1:4  0:4) % 53 e;  ] (3:4  0:4)  10;5 53 e; e+ e; Lepton Family number (LF) violating modes  ] < 1:2 % 90% 53 e; e; < 1:2  10;11 90% 53 ; + ; ; 12 e e e < 1 :0  10 90% 53 ; ; 11 e 2 < 7 :2  10 90% 53 i

e

d

e

LF

f

LF

LF

LF

J = 21



:29 Mass m = 1776:99 +0 ; 0:26 MeV (m  + ; m  ; )/maverage < 3:0  10;3, CL = 90% Mean life  = (290:6 1:1)  10;15 s c = 87:11 m Magnetic moment anomaly > ; 0:052 and < 0:058, CL = 95% Re(d  ) = ; 0:22 to 0:45  10;16 e cm, CL = 95% Im(d  ) = ; 0:25 to 0:008  10;16 e cm, CL = 95% Weak dipole moment Re(d  ) < 0:50  10;17 e cm, CL = 95% Im(d  ) < 1:1  10;17 e cm, CL = 95% Weak anomalous magnetic dipole moment Re(  ) < 1:1  10;3 , CL = 95% Im(  ) < 2:7  10;3, CL = 95% w

w

w

w

e

e

p

e

g

e

+ modes are charge conjugates of the modes below.

c

Scale factor/ p Condence level (MeV/c)

Modes with one charged particle particle;  0 neutrals  0K 0  (85:35  0:07) % S=1.1 (\1-prong") ; 0 particle  0 neutrals  0K  (84:72  0:07) % S=1.1 ;  ] (17:36  0:06) %   ; ; 3  ] ( 3:6  0:4 )  10    ] (17:84  0:06) % e ;  ;  ] ( 1:75  0:18) % e  h;  0K 0  (12:30  0:11) % S=1.4 ; h  (11:75  0:11) % S=1.4 ;

  ] (11:06  0:11) % S=1.4 ; ; 3 K   ] ( 6:86  0:23)  10 ; h  1 neutrals  (36:92  0:14) % S=1.1 h ; 0  (25:87  0:13) % S=1.1 ; 0

  ] (25:42  0:14) % S=1.1 ; 0 non (770)  ( 3:0  3:2 )  10;3 K ; 0   ] ( 4:50  0:30)  10;3 h ;  2 0  (10:77  0:15) % S=1.1 h ; 2 0  ( 9:39  0:14) % S=1.1 h; 2 0  (ex.K 0 ) ( 9:23  0:14) % S=1.1 ; 2 0  (ex.K 0 )  ] ( 9:17  0:14) %

S=1.1 ; 0 0

2  (ex.K ), < 9  10;3 CL=95% ; 2scalar 0 0

 (ex.K ), < 7  10;3 CL=95% vector ; 0 0 K 2  (ex.K )  ] ( 5:8  2:3 )  10;4 h ;  3 0  ( 1:37  0:11) % S=1.1 ; h 3 0  ( 1:21  0:10) % ; 0 0

3  (ex.K )  ] ( 1:08  0:10) % :2 K ; 3 0  (ex.K 0 ,  ] ( 3:8 +2 ; 2:0 )  10;4 ) h; 4 0  (ex.K 0 ) ( 1:6  0:6 )  10;3 :6 ;3 h; 4 0  (ex.K 0 ,)  ] ( 1:0 +0 ; 0:5 )  10 K ;  0 0  0K 0  0  ( 1:56  0:04) % K ;  1 ( 0 or K 0 or )  ( 8:74  0:35)  10;3 g

c

e

Fraction (;i /;)

L

c

e

e

g

{ {

885 885 888 888 883 883 883 820

{

878 878 878 814

{

862 862 862 862

862

g

796

g

836 836 766

g

g

{

800 800 820

{

34

Lepton Summary Table K 0 (particles);  h ; K 0  ; K0

; K0 

(non-K (892); )  K ; K 0  K ; K 0  0 0  h ; K 0 0  ; K 0 0 

K 0 ;  K ; K 0 0 ; K 0  1 0 

; K 0 0 0 

K ; K 0 0 0  ; K 0 K 0 

; K 0 K 0 

; K 0 K 0 

; K 0 K 0 0 

; K 0 K 0 0 

; K 0 K 0 0 

K 0 h+ h; h;  0 neutrals  K 0 h + h ; h ;  S

S

S

S

L

S

S

S

L

Modes with K 0 's ( 9:2  0:4 )  10;3 ( 1:05  0:04) %  ] ( 8:9  0:4 )  10;3 < 1 :7  10;3 g

g ] ( ( ( g ] ( ( g ] ( ( ( <

( g ] ( g ] ( ( <

<

( (

1:54  0:16)  10;3 3:09  0:24)  10;3 5:2  0:4 )  10;3 3:7  0:4 )  10;3 2:2  0:5 )  10;3 1:55  0:20)  10;3 3:2  1:0 )  10;3 2:6  2:4 )  10;4 1 :6  10;4 1:59  0:29)  10;3 2:4  0:5 )  10;4 1:10  0:28)  10;3 3:1  2:3 )  10;4 2 :0  10;4 3:1  1:2 )  10;4 1 :7  10;3 2:3  2:0 )  10;4

Modes with three charged particles h; h; h+  0 neutrals  0K 0  (15:19  0:07) % h; h; h+  0 neutrals  (14:57  0:07) % 0 + ; (ex. K ! ) (\3-prong") h ; h ; h +  (10:01  0:09) % h; h; h+  (ex.K 0 ) ( 9:65  0:09) % h; h; h+  (ex.K 0 ,!) ( 9:60  0:09) % ; + ; 

( 9:47  0:10) % ; + ;  (ex.K 0 )

( 9:16  0:10) % ; + ;  (ex.K 0 ),

< 2 :4 % non-axial vector0 ; + ;

 (ex.K ,! )  ] ( 9:12  0:10) % h; h; h+  1 neutrals  ( 5:19  0:10) % h; h; h+  1 neutrals  ( 4:92  0:09) % (ex. K 0 ! + ; ) h ; h ; h + 0  ( 4:53  0:09) % h; h; h+ 0  (ex.K 0 ) ( 4:35  0:09) % h; h; h+ 0  (ex. K 0 , !) ( 2:62  0:09) % ; + ; 0 

( 4:37  0:09) % ; + ; 0  (ex.K 0 )

( 4:25  0:09) % ; + ; 0  (ex.K 0 ,!)  ] ( 2:51  0:09) %

; ; + 0 h h h 2  ( 5:5  0:4 )  10;3 h; h; h+ 2 0  (ex.K 0 ) ( 5:4  0:4 )  10;3 ; ; + 0 0 h h h 2  (ex.K ,!,)  ] ( 1:1  0:4 )  10;3 ; ; + 0 h h h 3   ] ( 2:3  0:8 )  10;4 K ; h+ h;  0 neutrals  ( 6:9  0:4 )  10;3 K ; h+ ;  (ex.K 0 ) ( 4:8  0:4 )  10;3 K ; h+ ; 0  (ex.K 0 ) ( 1:07  0:22)  10;3 K ; + ;  0 neutrals  ( 5:0  0:4 )  10;3 K ; + ;  ( 3:9  0:4 )  10;3 0 0  (ex.K 0 ) K ; + ;  ( 3:8  0:4 )  10;3 K ; + ;  (ex.K 0 )  ] ( 3:3  0:4 )  10;3 K ; 0  ! ( 1:6  0:6 )  10;3 K ; + ;  ; + ; 0 K  ( 1:18  0:25)  10;3 K ; + ; 0  (ex.K 0 ) ( 6:5  2:4 )  10;4 ; + ; 0 0 K  (ex.K ,)  ] ( 5:9  2:4 )  10;4 K ; + K ;  0 neut.  < 9  10;4 K ; K + ;  0 neut.  ( 1:97  0:18)  10;3 K ; K + ;   ] ( 1:55  0:07)  10;3 K ; K + ; 0   ] ( 4:2  1:6 )  10;4 K ; K + K ;  0 neut.  < 2 :1  10;3 K ; K + K ;  < 3 :7  10;5 ; K + ;  0 neut. 

< 2 :5  10;3 ( 2:8  1:5 )  10;5 e ; e ; e +  ; ; e +  < 3 :6  10;5  e L

S=1.1 S=1.1 S=1.1 CL=95%

{

812 812 812

737 737 794 794 612 685

{

CL=95% S=1.1 S=1.1 CL=95% CL=95%

763 619 682 682 682 614 614 614 760 760

S=1.1 S=1.1

861 861

S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95%

861 861 861 861 861 861

S=1.2 S=1.3 S=1.3

861

S=1.3 S=1.3 S=1.2 S=1.3 S=1.3 S=1.2

S=1.3 S=1.3

834 834 834 834 834 834 797 797 797 749 794 794 763 794 794

S=1.6 S=1.6

794 794

S

g

S

g

g

g

g

g

g

g

e

S=1.5 S=1.3 S=1.5

CL=95% S=1.1 S=1.1 CL=95% CL=90% CL=95% CL=90%

{ {

{

763 763 763 685 685 685 618 472 472 794 888 885

Modes with ve charged particles 3h; 2h+  0 neutrals  ( 1:00  0:06)  10;3 (ex. K 0 ! ; + ) (\5-prong") 3h; 2h+  (ex.K 0 )  ] ( 8:2  0:6 )  10;4 3h; 2h+ 0  (ex.K 0 )  ] ( 1:81  0:27)  10;4 3h; 2h+ 2 0  < 1 :1  10;4

794

S

CL=90%

794 746 687

CL=90%

800 683

S=1.1 S=1.4

665

g

g

Miscellaneous other allowed modes (5 );  ( 8:0  0:7 )  10;3 ; + 4h 3h  0 neutrals  < 2 :4  10;6 (\7-prong") X ; (S=; 1)  ( 2:91  0:08) % K  (892);  0 neutrals  ( 1:42  0:18) % 0 0K   ; K (892)  ( 1:29  0:05) % K  (892)0 K ;  0 neutrals  ( 3:2  1:4 )  10;3  0 ; K (892) K  ( 2:1  0:4 )  10;3 K  (892)0 ;  0 neutrals  ( 3:8  1:7 )  10;3 K  (892)0 ;  ( 2:2  0:5 )  10;3 ( 1:0  0:4 )  10;3 (K  (892) );  ! ; K 0 0 

K1 (1270);  ( 4:7  1:1 )  10;3 K1 (1400);  ( 1:7  2:6 )  10;3 :4 ;3 K  (1410);  ( 1:5 +1 ; 1:0 )  10 K 0 (1430);  < 5  10;4 K 2 (1430);  < 3  10;3 ;   < 1 :4  10;4 ; 0    ] ( 1:74  0:24)  10;3 ; 0 0   ( 1:5  0:5 )  10;4 ;  K  ] ( 2:7  0:6 )  10;4  ;  K (892)  ( 2:9  0:9 )  10;4 ; 0  K ( 1:8  0:9 )  10;4 0 ;  ( 2:2  0:7 )  10;4 K + ; ; 

 0 neutrals  < 3  10;3 ; + ;   ( 2:3  0:5 )  10;4 ; ; 0   a1 (1260)  !  < 3 :9  10;4 ;   < 1 :1  10;4 ; 0   < 2 :0  10;4 0 ;  (958) < 7 :4  10;5 0 ; 0   (958) < 8 :0  10;5 ;   < 2 :0  10;4 ;  K < 6 :7  10;5 f1 (1285) ;  ( 5:8  2:3 )  10;4 f1 (1285) ;  ! ( 1:3  0:4 )  10;4 ; + ;   ; ;

(1300)  ! ( )  ! < 1 :0  10;4 (3 );  ; < 1 :9  10;4

(1300)  ! (( ) ;wave );  ! (3 );  h; !  0 neutrals  ( 2:38  0:08) % h ; !   ] ( 1:94  0:07) % h ; ! 0   ] ( 4:4  0:5 )  10;3 h ; ! 2 0  ( 1:4  0:5 )  10;4 2h; h+ !  ( 1:20  0:22)  10;4 L

{

665 542 542 656 656

{

S=1.7 CL=95% CL=95% CL=95%

g

g

CL=90% CL=90% CL=95% CL=95% CL=90% CL=90% CL=90% CL=90%

433 335 326 328 317 797 778 746 720 511 665 661 744 744

{

637 559 620 591 585 445 408

{

CL=90%

{

CL=90%

{

S

g

g

708 708 684 644 641

35

Lepton Summary Table Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes means lepton number violation (  ; ! + ; ; ). Following common usage, means lepton family violation lepton number violation (  ; ! ; + ; ). means baryon number violation. ; ; 6 e < 2 :7  10 CL=90% ;  < 1 :1  10;6 CL=90% e ; 0 < 3 :7  10;6 CL=90% ; 0  < 4 :0  10;6 CL=90% e; K 0 < 9 :1  10;7 CL=90% ; 0  K < 9 :5  10;7 CL=90% e;  < 8 :2  10;6 CL=90% ;   < 9 :6  10;6 CL=90% e ; 0 < 2 :0  10;6 CL=90% ; 0   < 6 :3  10;6 CL=90% e ; K  (892)0 < 5 :1  10;6 CL=90% ;  0  K (892) < 7 :5  10;6 CL=90%  0 ; < 7 :4  10;6 CL=90% e K (892) 0 ;  < 7 :5  10;6 CL=90%  K (892) ; e  < 6 :9  10;6 CL=90% ;   < 7 :0  10;6 CL=90% e; e+ e; < 2 :9  10;6 CL=90% e ; + ; < 1 :8  10;6 CL=90% e + ; ; < 1 :5  10;6 CL=90% ; + e;  e < 1 :7  10;6 CL=90% + ; e;  e < 1 :5  10;6 CL=90% ; + ;    < 1 :9  10;6 CL=90% e ; + ; < 2 :2  10;6 CL=90% e + ; ; < 1 :9  10;6 CL=90% ; + ;  < 8 :2  10;6 CL=90% + ; ; 

< 3 :4  10;6 CL=90% ; + ; e K < 6 :4  10;6 CL=90% ; ; + e K < 3 :8  10;6 CL=90% + ; ; e K < 2 :1  10;6 CL=90% < 2 :2  10;6 CL=90% e; K 0 K 0 e; K + K ; < 6 :0  10;6 CL=90% e+ K ; K ; < 3 :8  10;6 CL=90% ; +K;  < 7 :5  10;6 CL=90% ; ;K+  < 7 :4  10;6 CL=90% + ;K;  < 7 :0  10;6 CL=90% ; 0 0  K K < 3 :4  10;6 CL=90% ; +K;  K < 1 :5  10;5 CL=90% + ;K;  K < 6 :0  10;6 CL=90% e ; 0 0 < 6 :5  10;6 CL=90% ; 0 0  < 1 :4  10;5 CL=90% e;   < 3 :5  10;5 CL=90% ;   < 6 :0  10;5 CL=90% e ; 0  < 2 :4  10;5 CL=90% ; 0   < 2 :2  10;5 CL=90% p , < 3 :5  10;6 CL=90% 0 p , < 1 :5  10;5 CL=90% 0 p 2 , < 3 :3  10;5 CL=90% p , < 8 :9  10;6 CL=90% p 0  , < 2 :7  10;5 CL=90% e ; light boson < 2 :7  10;3 CL=95% ;  light boson < 5  10;3 CL=95% L

e.g.

LF

e.g.

LF

LF

LF

LF

LF

S

LF

LF

LF

LF

LF

LF

LF

LF LF

LF

LF

LF

LF

LF

LF LF

LF L

LF L

LF

LF L

S

S

LF

LF

L

LF

LF L

S

S

L { charged lepton Mass m > 100:8 GeV, CL = 95%  ]  L { stable charged heavy lepton Mass m > 102:6 GeV, CL = 95%

e

and not

e

LF

S

Heavy Charged Lepton Searches

LF

LF

L

LF

LF

LF

LF

LF LF

L B L B L B L B L B LF

LF

Decay to W .

h

B

888 885 883 880 819 815 804 800 719 715 665 660 665 660 596 590 888 882 882 885 885 873 877 877 866 866 813 813 813 736 739 739 800 800 800 696 699 699 878 867 699 654 798 784 641 632 604 475 360

{ {

e

J = 21

The following results are obtained using neutrinos associated with e + or e ; . See the Note on \Electron, muon, and tau neutrino listings" in the Particle Listings. Mass m < 3 eV Interpretation of tritium beta decay experiments is complicated by anomalies near the endpoint, and the limits are not without ambiguity. Mean life/mass,  /m  > 7  109 s/eV  ] (solar) Mean life/mass,  /m  > 300 s/eV, CL = 90%  ] (reactor) Magnetic moment  < 1:0  10;10  , CL = 90% i

i

B



J = 21 The following results are obtained using neutrinos associated with + or ; . See the Note on \Electron, muon, and tau neutrino listings" in the Particle Listings. Mass m < 0:19 MeV, CL = 90% Mean life/mass,  /m  > 15:4 s/eV, CL = 90% Magnetic moment  < 6:8  10;10  , CL = 90% B



J = 21

The following results are obtained using neutrinos associated with  + or  ; . See the Note on \Electron, muon, and tau neutrino listings" in the Particle Listings. Mass m < 18:2 MeV, CL = 95% Magnetic moment  < 3:9  10;7  , CL = 90% Electric dipole moment d < 5:2  10;17 e cm, CL = 95% B

Number of Neutrino Types and Sum of Neutrino Masses Number N = 2:994 0:012 (Standard Model ts to LEP data) Number N = 2:92 0:07 (Direct measurement of invisible Z width)

36

Lepton Summary Table Neutrino Mixing

Heavy Neutral Leptons, Searches for

There is now compelling evidence that neutrinos have nonzero mass from the observation of neutrino avor change, both from the study of atmospheric neutrino uxes by SuperKamiokande, and from the study of solar neutrino cross sections by SNO (charged and neutral currents) and SuperKamiokande (elastic scattering). The avor change observed in solar neutrinos has been conrmed by the KamLAND experiment using reactor antineutrinos. Solar Neutrinos Detectors using gallium (E & 0:2 MeV), chlorine (E & 0:8 MeV), and Cherenkov eect in water (E & 5 MeV) measure signicantly lower neutrino rates than are predicted from solar models. From the determination by SNO of the 8 B solar neutrino ux via elastic scattering, charged-current process interactions, and neutral-current interactions, one can determine the ux of non- active neutrinos to :66 6 ;2 ;1 be (  )= (3:41 +0 ; 0:64 )  10 cm s , providing a 5:3  evidence for neutrino avor change. A global analysis of the solar neutrino data, including the KamLAND results that conrm the eect using reactor antineutrinos, favors large mixing angles and (m2 ) ' (6{9)  10;5 eV2 . See the Note \Solar Neutrinos" in the Listings and the review \Neutrino Mass, Mixing, and Flavor Change." Atmospheric Neutrinos Underground detectors observing neutrinos produced by cosmic rays in the atmosphere have measured a / ratio much less than expected, and also a deciency of upward going compared to downward. This can be explained by oscillations leading to the disappearance of with m2  (1{3)  10;3 eV2 and almost full mixing between and  . The eect has been conrmed by the K2K experiment using accelerator neutrinos. See the review \Neutrino Mass, Mixing, and Flavor Change." e

e

For excited leptons, see Compositeness Limits below. Stable Neutral Heavy Lepton Mass Limits Mass m > 45:0 GeV, CL = 95% (Dirac) Mass m > 39:5 GeV, CL = 95% (Majorana) Neutral Heavy Lepton Mass Limits Mass m > 90:3 GeV, CL = 95% (Dirac coupling to e, ,   conservative case( )) Mass m > 80:5 GeV, CL = 95% (Majorana coupling to e, ,   conservative case( )) L

L

NOTES In this Summary Table: When a quantity has \(S = : : :)" to its right, the error on the quantity has p been enlarged by the \scale factor" S, dened as S = 2 =(N ; 1), where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1:25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction. A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame. a] This is the best limit for the mode e ; ! . The best limit for \electron disappearance" is 6:4  1024 yr. b] See the \Note on Muon Decay Parameters" in the  Particle Listings for denitions and details. c] P is the longitudinal polarization of the muon from pion decay. In standard V ;A theory, P = 1 and  =  = 3/4. d] This only includes events with the energy > 10 MeV. Since the e ; and e ; modes cannot be clearly separated, we regard the latter mode as a subset of the former. e] See the relevant Particle Listings for the energy limits used in this measurement. f ] A test of additive vs. multiplicative lepton family number conservation. g] Basis mode for the  . h] L mass limit depends on decay assumptions see the Full Listings. i] Limit assumes radiative decay of neutrino. e

e

37

Quark Summary Table QUARKS

The u-, d-, and s-quark masses are estimates of so-called \currentquark masses," in a mass-independent subtraction scheme such as MS at a scale 2 GeV. The c- and b-quark masses are the \running" masses in the MS scheme. For the b-quark we also quote the 1S mass. These can be dierent from the heavy quark masses obtained in potential models. I(J P ) = 21 ( 21 + ) Charge = 23 e I = + 21

u

Mass m = 1:5 to 4 MeV  ] m /m = 0:3 to 0:7 a

u

z

d

I(J P ) = 21 ( 21 + )

d

z

m /m = 17 to 22 m = (m +m )/2 = 3:0 to 5:5 MeV s

d

u

d

I(J P ) = 0( 21 +)

s

Mass m = 80 to 130 MeV  ] Charge = ; 13 e Strangeness = ;1 (m { (m + m )/2) (m ; m ) = 30 to 50 a

s

u

d

d

Charge = 23 e

Top = +1

Mass m = 174:3  5:1 GeV (direct observation of top events) 4 Mass m = 178:1 +10 ; 8 3 GeV (Standard Model electroweak t) :

:

t t

DECAY MODES

Fraction (;i /;)

d

<

:

95%

{ { { { {

e

<

:

95%

{

b,c

`

p

Con dence level (MeV/c)

W q (q = b, s, d) Wb ` anything  ] ( 9 4  2 4) %  b  q (q=u,c)  ] 59  10;3 T = 1 weak neutral current (T1) modes Z q (q=u,c)  ] 13 7 % :

:



T1

Charge = ; 13 e I = ; 21

Mass m = 4 to 8 MeV a]

I(J P ) = 0( 21 +)

t

b 0 (4th Generation) Quark, Searches for

Mass m > Mass m > Mass m > Mass m >

190 GeV, CL = 95% 199 GeV, CL = 95% 128 GeV, CL = 95% 46:0 GeV, CL = 95%

(p p, quasi-stable b0 ) (p p, neutral-current decays) (p p, charged-current decays) (e + e ; , all decays)

u

I(J P ) = 0( 21 +)

c

Charge = 23 e Charm = +1

Mass m = 1:15 to 1:35 GeV

I(J P ) = 0( 1 +)

b

2

Charge = ; 13 e Mass m = 4:1 to 4:4 GeV Mass m = 4:6 to 4:9 GeV

(MS mass) (1S mass)

Free Quark Searches

All searches since 1977 have had negative results. NOTES a] The ratios m /m and m /m are extracted from pion and kaon masses using chiral symmetry. The estimates of u and d masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses. b] ` means e or decay mode, not the sum over them. c] Assumes lepton universality and W -decay acceptance. d] This limit is for ;(t !  q)/;(t ! W b). e] This limit is for ;(t ! Z q)/;(t ! W b). u

Bottom = ;1

d

s

d

38

Meson Summary Table I G (J PC ) = 0+(0 ; +)



LIGHT UNFLAVORED MESONS (S = C = B = 0) p

Mass m = 547:75  0:12 MeV f ] (S = 2.6) Full width ; = 1:29  0:07 keV g] C-nonconserving decay parameters + 0 Left-right asymmetry = (0:09  0:17)  10 2 + 0 Sextant asymmetry = (0:18  0:16)  10 2 + 0 Quadrant asymmetry = (; 0:17  0:17)  10 2 + Left-right asymmetry = (0:9  0:4)  10 2 + (D-wave) = ; 0:02  0:07 (S = 1.3) Dalitz plot parameter 0 0 0 = ; 0:031  0:004 (S = 1.1)

For I = 1 ( , b, , a): ud, (uu ;dd)/ 2, du for I = 0 (,  , h, h , !, , f , f ): c1 (u u + d d) + c2 (s s) 0

0

0

;

I G (J P ) = 1;(0; )

 

 

modes are charge conjugates of the modes below. For decay limits to particles which are not established, see the appropriate Search setions (Massive Neutrino Peak Search Test, A0 (axion), and Other Light Boson (X 0 ) Searches, etc.). p Fraction (;i /;) Condence level (MeV/c) b] (99:98770 0:00004) % 30 c] ( 2:00 0:25 ) 10 4 30 b] ( 1:230 0:004 ) 10 4 70 c] ( 1:61 0:23 ) 10 7 70 ( 1:025 0:034 ) 10 8 4 ( 3 :2 0:5 ) 10 9 70 6 < 5 10 90% 70

+ DECAY MODES

+ 

+  e + e e + e e + e 0 + e e e + e e + e  





;

;

















;

;

;

;



;



Lepton Family number (LF) or Lepton number (L) violating modes

+  e

+ e

; e + e + 

L LF LF

d] d]

< < <

1 :5 8 :0 1 :6

10 3 90% 10 3 90% 10 6 90% ;



;



;





0 DECAY MODES

2 e+ e positronium e+ e+ e e e+ e 4

(98:798 ( 1:198 ( 1:82 ( 3:14 ( 6 :2 < 2 e] < 8:3 < 1 :7 < 3 :1 < 2 :1 < 6

;

;

;

;

 e  e       

3

    

0:032) % 0:032) % 0:29 ) 10 0:30 ) 10 0:5 ) 10 10 10 10 10 10 10 









;

; ; ;

;



;



;



S=1.1 S=1.1

;

;



9 5 8 8 7 6 6 6 4

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

Charge conjugation (C) or Lepton Family number (LF) violating modes

+ e ;

; e +

+ e ; + ; e +

C LF LF LF

< < < <

3 :1 3 :8 3 :4 1:72

   

10 10 10 10

; ; ; ;

;

8 CL=90% 10 CL=90% 9 CL=90% 8 CL=90%

67 26 26 26









;

; ; ; ;



;



;

;



;



;

;



3 4 5 6 5 4 3 4 6

;

;



;

Charge conjugation (C), Parity (P), Charge conjugation  Parity (CP), or Lepton Family number (LF) violating modes

;

67 67 67 67 67 67 67 67 67 67 67





;

;

Scale factor/ p Condence level (MeV/c)

Fraction (;i /;)

;





;

For decay limits to particles which are not established, see the appropriate Search setions (A0 (axion), and Other Light Boson (X 0 ) Searches, etc.).





;

;



0:5 ) % S=1.3 0:26) % S=1.2 0:29) % S=1.2 1:4 ) 10 4 % CL=90%



;

;

 

(28:0 0:5 ) % (22:6 0:4 ) % ( 4:68 0:11) % ( 6:0 0:8 ) 10 ( 3:1 0:4 ) 10 < 7 :7 10 ( 5:8 0:8 ) 10 < 6 :9 10 ( 4:0 +142::07 ) 10 < 2 :0 10 < 5 10 < 3 10

;

;

;

 

(72:0 g] (39:43 (32:51 ( 7 :2 < 2 :8

;

+ 0 0 3 4 0 0 e+ e 0 +

+ e + e +

Mass m = 134:9766  0:0006 MeV (S = 1.1) m ; m 0 = 4:5936  0:0005 MeV Mean life  = (8:4  0:6)  10 17 s (S = 3.0) c = 25:1 nm 

Neutral modes

Charged modes

charged modes + 0 + e+ e

+ e+ e

+

e+ e e+ e + e+ e + 2 + 0 0 +

Scale factor/ p Condence level (MeV/c)

Fraction (;i /;)

;

30 30 30

I G (J PC ) = 1;(0 ; +)

0

DECAY MODES

neutral modes 2 3 0 0 2 other neutral modes

:

;

 

;

;

:



;

;

Mass m = 139:57018  0:00035 MeV (S = 1.2) Mean life  = (2:6033  0:0005)  10 8 s (S = 1.2) c = 7:8045 m ! `  form factors a] FV = 0:017  0:008 FA = 0:0116  0:0016 (S = 1.3) R = 0:059 +00 009 008 ;

;

;

;

 

;

;

;

f0(600) i] or

P,CP P,CP C P,CP C h] C h] LF

< < < < < < <

3 :3 4 :3 5 6 :9 4 5 6

      

10 10 10 10 10 10 10

; ; ; ; ; ; ;

4 4 4 7 5 6 6

S=1.3 S=1.3 S=1.2 S=1.4

{

274 179 257

{

{

CL=90% CL=90%

174 236 274 253 274 253 274 235 236 174 210

CL=90% CL=90% CL=95% CL=90% CL=90% CL=90% CL=90%

236 238 274 40 257 210 264

CL=90% CL=90% S=5.8

I G (J PC ) = 0+(0 + +)

Mass m = (400{1200) MeV Full width ; = (600{1000) MeV f0 (600) DECAY MODES

Fraction (;i /;) dominant seen

p (MeV/c)

{ {

39

Meson Summary Table + ; e+ e; e+ e; 0 4 0 e+ e;

I G (J PC ) = 1+(1 ; ;) (770) j] Mass m = 775:8  0:5 MeV Full width ; = 150:3  1:6 MeV ;ee = 7:02  0:11 keV (770) DECAY MODES

 

Fraction (;i /;) 100

Scale factor/ p Condence level (MeV/c) 364

%



(770) decays ( 4 :5 0 : 5 ) < 6 < 2 :0 (770)0 decays ( 9 :9 1 :6 ) ( 6 :0 1 :3 ) ( 3 :0 0 : 4 ) ( 4 :5 0 :8 ) k] ( 4:55 0:28 ) k] ( 4:67 0:09 ) ( 1:01 +00::54 36 0:34) ( 1 :8 0 :9 ) < 4  

 







+

;

0

+ 0  0 0

+

e+ e + 0 + + + 0 0 ;

;

;

;

! (782)

 





 











10 4 10 3 10 3

S=2.2 CL=84% CL=84%

;

;

;

375 153 254

  

10 10 10 10 10 10 10 10 10

; ;

; ; ; ;

3 4 4 5 5 5 4 5 5

S=1.1 S=1.4

;

; ;

CL=90%

362 376 195 364 373 388 323 251 257

;



;

;



;

 0 e+ e; 0 + ; + e e; + ; 0 0 + ; + ; + ; 0 0  0

+ ; 3



































;

;

;

f0(980) l]

KK

;

;

;

C C

< <

1 3

 

10 3 10 4 ;

;

CL=90% CL=90%

162 330

KK



(1020)

I G (J PC ) = 0+(0 ; +)

(958) DECAY MODES +  0 (including non-resonant + ) 0 0 ! 3 0

+ + 0 0 0 + + + + neutrals + + 0 00

 

;

Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (44:3 1:5 ) % S=1.2 232 (29:5 1:0 ) % S=1.2 165 



;

;

;

6

;

;

;

;

;

;

(20:9 ( 3:03 ( 2:12 ( 1:56 ( 1:04 < 5 < 4 < 1 < 1 < 1 < 1

    

1 :2 ) % 0:31) % 0:14) % 0:26) 10 3 0:26) 10 4 % % % % % % 



S=1.2 S=1.3

;

;

CL=90% CL=90% CL=90% CL=95% CL=90% CL=90%

239 159 479 430 467 428 110 372

{

298 211

<

h] h] h] h]

< < < < < < <

2 9 1 :4 2 :4 1 :0 6 :0 1 :5 4 :7

%

      

10 10 10 10 10 10 10

; ; ; ; ; ; ;

4 3 3 4 5 5 4

458 479 469 380 479

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

458 459 469 322 479 445 273 473

Fraction (;i /;) dominant seen seen

p (MeV/c) 471 y

490

(1020) DECAY MODES K+K K 0L K 0S 0  + +  0 e+ e

+

 e+ e + ! 0 ;

;

;

;

;

f0 (980) 0 0 + ; + + + ; 0 e+ e; 0 a0 (980)  0 (958)  0 0

+ ;   + ;  + ;

Fraction (;i /;) dominant seen seen

p (MeV/c) 322 y

492

Mass m = 1019:456  0:020 MeV (S = 1.1) Full width ; = 4:26  0:05 MeV (S = 1.7)

 

!  +

Mass m = 957:78  0:14 MeV Full width ; = 0:202  0:016 MeV (S = 1.3)

; ;

CL=90% CL=90% CL=90% CL=90% CL=90%

I G (J PC ) = 0;(1 ; ;)

;

 0 (958)



;

3 4 4 4 7

I G (J PC ) = 1;(0 + +)

a0 (980) DECAY MODES 

;

;



; ;

Mass m = 984:7  1:2 MeV (S = 1.5) Full width ; = 50 to 100 MeV

;

;



10 10 10 10 10

I G (J PC ) = 0+(0 + +)

f0 (980) DECAY MODES

;

;

 

Mass m = 980  10 MeV Full width ; = 40 to 100 MeV

;

Charge conjugation (C) violating modes

 0 3 0

P,CP P,CP C C C C C LF

;

a0(980) l]

Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (89:1 0:7 ) % S=1.1 327 ( 8:92 +00::28 S=1.1 380 24 ) % ( 1:70 0:27) % S=1.4 366 ( 1:4 +70::09 ) 10 3 { ( 4:9 0:5 ) 10 4 200 ( 5:9 1:9 ) 10 4 380 ( 9:6 2:3 ) 10 5 349 ( 7:14 0:13) 10 5 S=1.1 391 < 2 % CL=90% 262 3 < 3 :6 10 CL=95% 366 < 1 10 3 CL=90% 256 5 ( 6:7 1:1 ) 10 367 5 < 3 :3 10 CL=90% 162 5 ( 9:0 3:1 ) 10 377 < 1 :9 10 4 CL=95% 391

6 9 8 5 2 :1

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes



I G (J PC ) = 0;(1 ; ;)

(782) DECAY MODES + 0 0 + neutrals (excluding 0 )

<

+ 0 0 0 e+ e  e+ e 3

+ 0

+  e

Mass m = 782:59  0:11 MeV (S = 1.7) Full width ; = 8:49  0:08 MeV ;ee = 0:60  0:02 keV

! !

<

;





;





;

;

<

;





;

< <

Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (49:1 0:6 ) % S=1.2 127 (34:0 0:5 ) % S=1.1 110 (15:4 0:5 ) % S=1.3 { ( 1:295 0:025) % S=1.1 363 ( 1:23 0:10 ) 10 3 501 ( 2:98 0:04 ) 10 4 S=1.1 510 ( 2:85 0:19 ) 10 4 499 ( 1:15 0:10 ) 10 4 363 ( 7:3 1:3 ) 10 5 490 ( 5:2 +11::31 ) 10 5 172 < 5 % CL=84% 209 < 1 :2 10 5 CL=90% 215 ( 4:1 1:3 ) 10 5 490 ( 4:40 0:21 ) 10 4 39 4 ( 1:09 0:06 ) 10 492 ( 3:9 +22::82 ) 10 6 410 < 4 :6 10 6 CL=90% 342 ( 1:12 0:28 ) 10 5 501 5 ( 8:3 0:5 ) 10 346 5 ( 7:6 0:6 ) 10 34 5 ( 6:2 0:7 ) 10 S=1.1 60 5 < 2 10 CL=90% 293 5 ( 1:4 0:5 ) 10 499 < 5 10 4 CL=90% 215 < 1 :8 10 5 CL=90% 288 < 9 :4 10 6 CL=90% 321 



























;





;

; ;

0













;



















 











;

; ;

;

;

;

;

;

;

;

;

;

; ;

;

;

;

;

;

;

;

40

Meson Summary Table 4 0

I G (J PC ) = 0;(1 + ;)

h1 (1170)

Mass m = 1170  20 MeV Full width ; = 360  40 MeV

h1 (1170) DECAY MODES 

Fraction (;i /;) seen

p (MeV/c) 307

I G (J PC ) = 1+(1 + ;)

b1 (1235)

a0 (980) ignoring a0 (980) ! K K]  excluding a0 (980) ] KK K K (892) 0 

p Fraction (;i /;) Condence level (MeV/c) dominant 348 D/S amplitude ratio = 0:277  0:027] ( 1:6 0:4) 10 3 607  seen + + 0 < 50 % 84% 535 < 8 % 90% 248 (KK) 0 0 0 KS KL < 6 % 90% 235 K 0S K 0S < 2 % 90% 235  < 1 :5 % 84% 147

b1 (1235) DECAY MODES ! 



;



y

;





a1 (1260) DECAY MODES (  )S wave (  )D wave ( (1450) )S wave ( (1450) )D wave

f0 (980) f0 (1370) f2 (1270) ;

;

;

;

(1295) DECAY MODES

 

 + ; a0 (980)  0 0  ( )S -wave

K K (892)+ c.c. 



( )S -wave

a2(1320)

y

y y

608

a2 (1320) DECAY MODES   !

KK  (958)

f2(1270)



:

;

f2 (1270) DECAY MODES +

;

KK 2 +2

:

Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (84:8 +21::53 ) % S=1.3 623 ( 7:1 +12::57 ) % S=1.3 563 ( 4 :6 0 :4 ) % S=2.7 404 ( 2 :8 0 :4 ) % S=1.2 559 ( 4:5 1:0 ) 10 3 S=2.4 327 ( 3:0 1:0 ) 10 3 565 ( 1:41 0:13) 10 5 638 3 < 8 10 CL=95% 478 3 < 3 :4 10 CL=95% 293 < 6 10 10 CL=90% 638 

 4 0  K 0 K ; + + c.c. e+ e;

f0(1370) l]















;

;

;

;

;

;

;

;

Fraction (;i /;) (33:1 + 21::18 ) % (22:0 + 11::42 ) % (11:0 + 00::76 ) % (11:0 + 00::76 ) % seen

f0 (1370) DECAY MODES

4

4 0 2 +2 + 

KK

;

S=1.3

568

;

S=1.3

566

;

S=1.3

563

;

S=1.3

336 y

;

;

2 0

2( )S -wave (1300) a1 (1260)



Scale factor/ p Condence level (MeV/c)

y

406 236

p (MeV/c) 487 244 490

{

Fraction (;i /;) seen seen

p (MeV/c) 404

{

I G (J PC ) = 1;(2 + +) Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (70:1 2:7 ) % S=1.2 416 (14:5 1:2 ) % 535 (10:6 3:2 ) % S=1.3 366 ( 4 :9 0 :8 ) % 437 3 ( 5:3 0:9 ) 10 288 ( 2:68 0:31) 10 3 652 6 ( 9:4 0:7 ) 10 659 < 8 % CL=90% 621 9 < 6 10 CL=90% 659 

















;

;

;

;

I G (J PC ) = 0+(0 + +)

Mass m = 1200 to 1500 MeV Full width ; = 200 to 500 MeV

;

Mass m = 1281:8  0:6 MeV (S = 1.6) Full width ; = 24:1  1:1 MeV (S = 1.3)

4

0 + 0 0



I G (J PC ) = 0+(1 + +)

f1 (1285) DECAY MODES

2 +2





Fraction (;i /;) seen seen seen seen



;

;

0 0 +

;

;

2 0

f1(1285)



+ ; e+ e;

Mass m = 1275:4  1:2 MeV Full width ; = 185:1 +32 56 MeV (S = 1.5)

S=2.8

;

482 308



0

I G (J PC ) = 0+(2 + +)



S=1.1

Mass m = 1318:3  0:6 MeV (S = 1.2) Full width ; = 107  5 MeV n]

y

{



568 482 234

Mass m = 1300  100 MeV n] Full width ; = 200 to 600 MeV

p (MeV/c) 353 353

{



CL=90%

I G (J PC ) = 1;(0 ; +)

(1300)



189

;

I G (J PC ) = 0+(0 ; +)

 

Fraction (;i /;) seen seen seen seen seen not seen seen seen seen seen

10 4

(16 7 )% ( 9:0 0:4) % not seen ( 5:5 1:3) % ( 7:4 2:6) 10 4 

(1300) DECAY MODES

Mass m = 1230  40 MeV n] Full width ; = 250 to 600 MeV



16 ) % 7 )%



I G (J PC ) = 1;(1 + +)

(1260) m]





Mass m = 1294  4 MeV (S = 1.6) Full width ; = 55  5 MeV



a1



 (1295)

Mass m = 1229:5  3:2 MeV (S = 1.6) Full width ; = 142  9 MeV (S = 1.2)

7 (52 (36

<



e+ e;

Fraction (;i /;) seen seen seen seen seen dominant seen seen seen seen seen seen not seen

p (MeV/c)

{ { { { { { { { { { { { {

41

Meson Summary Table 1

(1400) o]

I G (J PC ) = 1;(1 ; +)

1 (1400) DECAY MODES  0  ;

 (1405) p] was  (1440)

KK

(1405) DECAY MODES

KK



a0 (980)  ( )S -wave f0 (980)  4 K (892)K 

f1(1420) q]

Fraction (;i /;) seen seen

p (MeV/c) 570 569

KK K K (892)+ c.c. 

 

! (1420) r]

 (1475) p]

Fraction (;i /;) seen seen seen seen seen seen seen

Mass m = 1476  4 MeV (S = 1.4) Full width ; = 87  9 MeV (S = 1.6) (1475) DECAY MODES

KK K K (892)+ c.c. a0 (980) 

425 563 342



f0(1500) o]

{

I G (J PC ) = 0+(1 + +)

(1420) DECAY MODES

 ! b1 (1235) e+ e;

a0(1450) l]

f0 (1500) DECAY MODES   (958) 

4

4 0 2 +2 + 2 0

0

KK

!

(1450) s]

(1450) DECAY MODES

 

;



;

KK



f 02 (1525)

4

! e+ e

;

I G (J PC ) = 0+(2 + +)

Mass m = 1525  5 MeV n] Full width ; = 73 +65 MeV n] p (MeV/c) 488

{ { {

f 2 (1525) DECAY MODES

Fraction (;i /;)

00

KK

(88:8 (10:3 ( 8:2 ( 1:11





I G (J PC ) = 1;(0 + +)

1

   

p (MeV/c)

3:1 ) % 3:1 ) % 1:5 ) 10 3 0:14) 10 6 



;

;

581 530 750 763

I G (J PC ) = 1;(1 ; +)

(1600) o]

Mass m = 1596 +25 14 MeV Full width ; = 312 +64 24 MeV (S = 1.1) ;

;

Fraction (;i /;) seen seen seen seen

p (MeV/c) 627 410 547 484

1 (1600) DECAY MODES

 

0 ; f2 (1270)

 0 (958)

I G (J PC ) = 1+(1 ; ;)

Fraction (;i /;) seen seen < 2 :0 % seen



;

Fraction (;i /;) dominant seen seen seen

Mass m = 1465  25 MeV n] Full width ; = 400  60 MeV n]





I G (J PC ) = 0;(1 ; ;)

p Scale factor (MeV/c) 1.7 34 1.4 518 1.2 692 692 688 1.2 741 741 741 1.1 569 754

Fraction (;i /;) ( 1:9 0:8) % ( 5:1 0:9) % (49:5 3:3) % seen seen (34:9 2:3) % seen seen ( 8:6 1:0) % not seen 

Mass m = 1474  19 MeV Full width ; = 265  13 MeV a0 (1450) DECAY MODES   (958)

I G (J PC ) = 0+(0 + +)

0

p (MeV/c) 438 163 573 349

p (MeV/c) 477 245 393 738

Mass m = 1507  5 MeV (S = 1.2) Full width ; = 109  7 MeV

y

639 127

Mass m (1400{1450) MeV Full width ; (180{250) MeV ! !

Fraction (;i /;) dominant seen seen seen

 

p (MeV/c)

Fraction (;i /;) dominant dominant possibly seen seen

95%

;

310 55 360 541 630

I G (J PC ) = 0+(0 ; +)

was  (1440)

I G (J PC ) = 0+(0 ; +)

Mass m = 1426:3  0:9 MeV (S = 1.1) Full width ; = 54:9  2:6 MeV f1 (1420) DECAY MODES





Mass m = 1410:3  2:6 MeV n] (S = 2.2) Full width ; = 51  4 MeV n] (S = 2.2)  

<



Mass m = 1376  17 MeV Full width ; = 300  40 MeV  

4 % not seen <1 % < 1 :6 10 3 possibly seen



a2 (1320)

p Condence level (MeV/c) 720 669 95% 512 732

;

;

Fraction (;i /;) seen seen not seen seen

p (MeV/c) 769 600 259 497

I G (J PC ) = 0+(2 ; +) 2 (1645) Mass m = 1617  5 MeV Full width ; = 181  11 MeV 2 (1645) DECAY MODES

 

a2 (1320) KK K K 

 + ; a0 (980) f2 (1270) 

Fraction (;i /;) seen seen seen seen seen not seen

p (MeV/c) 242 580 404 685 496 y

42

Meson Summary Table ! (1650) t] was ! (1600)

Mass m = 1720  20 MeV n] ( 0 and + modes) Full width ; = 250  100 MeV n] ( 0 and + modes) ;

Mass m = 1670  30 MeV Full width ; = 315  35 MeV (1650) DECAY MODES

! !

 ! ! e+ e;

;

Fraction (;i /;) seen seen seen seen

p (MeV/c) 646 617 500 835

3 (1670) DECAY MODES

 !

b1 (1235) 2

Fraction (;i /;) seen seen possibly seen

(1700) DECAY MODES

2( + 

2 (1670) DECAY MODES

3

K K (892)+ c.c.

 a2 (1320)

KK e+ e

0!

;

f0(1710) u]

p Fraction (;i /;) Condence level (MeV/c) (95:8 1:4) % 809 (56:2 3:2) % 329 (31 4 ) % 648 (10:9 3:4) % { ( 8:7 3:4) % { ( 4:2 1:4) % 455 ( 2:7 1:1) % 303 < 3 :6 10 3 97.7% 148 < 1 :9 10 3 97.7% 366 



0 + ;   0 a1 (1260) h1 (1170)



p (MeV/c) 645 615 361



f2 (1270)



! (1450) b1 (1235)

Mass m = 1714  5 MeV Full width ; = 140  10 MeV (S = 1.2)

f0 (1710) DECAY MODES

Fraction (;i /;) seen seen seen

KK







;

(1800) DECAY MODES +



;

!

Fraction (;i /;) dominant seen seen seen not seen

;

p (MeV/c) 462 621 680 840 623

.

3 (1690) DECAY MODES

 + ; (770)  

Fraction (;i /;) (71:1 1:9 ) % (67 22 ) % (16 6 )% (23:6 1:3 ) % ( 3 :8 1 :2 ) % ( 1:58 0:26) % seen seen seen



seen seen

 



+

;

0

!

KK KK

Excluding 2 and a2 (1320) . a2 (1320)



 







p Scale factor (MeV/c) 790 787 655 834 629 1.2 685 727 520 633 307 333

; ; ; ;

  ; a0 (980)  f0 (1500) ;   0 (958) ; K 0 (1430)K ; ;

K (892)K

I G (J PC ) = 1+(3 ; ;)

Mass m = 1688:8  2:1 MeV n] Full width ; = 161  10 MeV n] (S = 1.5)

;

f0 (600) f0 (980) f0 (1370) f0 (1500)



3 (1690)

Fraction (;i /;) seen seen seen seen not seen not seen seen seen seen seen seen not seen

 

Mass m = 1680  20 MeV n] Full width ; = 150  50 MeV n] K K (892)+ c.c. K 0S K KK e+ e

Mass m = 1812  14 MeV (S = 2.3) Full width ; = 207  13 MeV

;

I G (J PC ) = 0;(1 ; ;)

(1680) DECAY MODES

I G (J PC ) = 1;(0 ; +)

(1800)





 

p (MeV/c) 701 659 846





(1680)

p (MeV/c) 803 653 650 651 404 447 349 371 849 849 496 544 334 704 860 674

I G (J PC ) = 0+(0 + +)



( )S -wave K K (892)+ c.c.

4

)

;

Mass m = 1672:4  3:2 MeV n] (S = 1.4) Full width ; = 259  9 MeV n] (S = 1.3)  

;

 +

I G (J PC ) = 1;(2 ; +)

(1670)

Fraction (;i /;) large dominant large large seen seen seen seen seen seen seen seen not seen seen seen seen

 

(1300)

I G (J PC ) = 0;(3 ; ;) !3 (1670) Mass m = 1667  4 MeV Full width ; = 168  10 MeV n] ! !

I G (J PC ) = 1+(1 ; ;)

(1700) s]

I G (J PC ) = 0;(1 ; ;)

;

p (MeV/c) 879

{

631

{

248 732 661 469 248 376

y

570

I G (J PC ) = 0;(3 ; ;) 3 (1850) Mass m = 1854  7 MeV Full width ; = 87 +28 23 MeV (S = 1.2) ;

3 (1850) DECAY MODES

 

KK K K (892)+ c.c. 

Fraction (;i /;) seen seen

p (MeV/c) 785 602

43

Meson Summary Table f2(1950)

I G (J PC ) = 0+(2 + +)

f2 (1950) DECAY MODES 

4



;



KK

f2(2010)

K + = us, K 0 = ds, K 0 = d s, K = u s, similarly for K 's ;

Fraction (;i /;) seen seen seen seen seen seen

K (892)K (892) +

STRANGE MESONS (S = 1, C = B = 0)

Mass m = 1945  13 MeV (S = 1.6) Full width ; = 475  19 MeV p (MeV/c) 389 963 925 804 838 973

I(J P ) = 21 (0;)

K

Mass m = 493:677  0:016 MeV v] (S = 2.8) Mean life  = (1:2384  0:0024)  10 8 s (S = 2.0) c = 3:713 m Slope parameter g w] (See Particle Listings for quadratic coecients) K + ! + + = ; 0:2154  0:0035 (S = 1.4) + = ; 0:217  0:007 (S = 2.5) K ! 0 0 = 0:638  0:020 (S = 2.5) K ! K decay form factors a,x] Assuming -e universality 2 (S = 1.5) + (K +3 ) = + (K + e3 ) = (2:78  0:07)  10 + 2 0 (K 3 ) = (1:77  0:16)  10 (S = 1.5) Not assuming -e universality 2 + (K + e3 ) = (2:77  0:05)  10 + (K +3 ) = (2:84  0:27)  10 2 (S = 1.8) 0 (K +3 ) = (1:74  0:22)  10 2 (S = 1.8) K +e3 fS /f+ = (; 0:3 +00 87 )  10 2 K +e3 fT /f+ = (; 1:2  2:3)  10 2 K +3 fS /f+ = (0:2  0:6)  10 2 K +3 fT /f+ = (; 0:1  0:7)  10 2 K + ! e + e FA + FV = 0:148  0:010 K + ! +  FA + FV = 0:165  0:013 K + ! e + e FA ; FV < 0:49 K + ! +  FA ; FV = ; 0:24 to 0:04, CL = 90% Charge Radius   r = 0:560  0:031 fm CP violation parameters (K ) = ; 0:02  0:12 T violation parameters K + ! 0 +  P = (; 4  5)  10 3 K + ! +  P = (; 0:6  1:9)  10 2 K + ! 0 +  Im( ) = ; 0:014  0:014 ;

I G (J PC ) = 0+(2 + +)

;

Mass m = 2011 +60 80 MeV Full width ; = 202  60 MeV ;

f2 (2010) DECAY MODES 



;

;





;

 

Fraction (;i /;) seen

p (MeV/c) y

;



;

I G (J PC ) = 1;(4 + +)

a4(2040)



Mass m = 2010  12 MeV Full width ; = 353  40 MeV

a4 (2040) DECAY MODES

KK

;

Fraction (;i /;) seen seen seen seen seen seen

+ 0  f2 (1270)  0  (958) ;

0

f4(2050)

;



p (MeV/c) 875 981 849 590 925 769

;



:

;

;

;



;



I G (J PC ) = 0+(4 + +)



Mass m = 2034  11 MeV (S = 1.6) Full width ; = 222  19 MeV (S = 1.8)

f4 (2050) DECAY MODES !!

Fraction (;i /;) not seen (17:0 1:5) % ( 6:8 +31::48 ) 10 3 ( 2:1 0:8) 10 3 < 1 :2 % seen 

KK

;

 4 0



a2 (1320)

f2(2300)





;

;



p (MeV/c) 650 1008 889 857 972 579



 





KK



f2(2340)

;

K + DECAY MODES p (MeV/c) 529 1037 1149

+  0 e + e

Called K +e3 . Called K +3 . 

;

;

Fraction (;i /;) seen

p (MeV/c) 573

( 1:55 (63:43 ( 4:87



( 3:27



0 +  ;

Mass m = 2339  60 MeV Full width ; = 319 +80 70 MeV

Scale factor/ p Condence level (MeV/c)

Fraction (;i /;)

Leptonic and semileptonic modes

e + e

0 0 e+  e + e+  e + +  0 0 0 e + e

I G (J PC ) = 0+(2 + +)

f2 (2340) DECAY MODES 

;

T

K modes are charge conjugates of the modes below.

Mass m = 2297  28 MeV Full width ; = 149  40 MeV Fraction (;i /;) seen seen seen

;

T



I G (J PC ) = 0+(2 + +)

f2 (2300) DECAY MODES 

;

:

+ 0 + 0 0 + +

( 2 :1 ( 4:08 ( 1 :4 < 3 :5



  

0:07 ) 10 5 0:17 ) % 0:06 ) %

S=1.2 S=1.2

247 236 228

0:06 ) %

S=1.2

215

0:4 ) 10 5 0:09 ) 10 5 0:9 ) 10 5 10 6 CL=90%

206 203 151 135











Hadronic modes

;

;

;

;

;

(21:13 0:14 ) % ( 1:73 0:04 ) % ( 5:576 0:031) %

S=1.1 S=1.2 S=1.1

205 133 125

3 4 5 CL=90% 5 CL=90% 6 CL=90%

236 228 228 215 206

 

;

+  0 e + e 0 e +  (SD) e 0 +  0 0 e+  e





Leptonic and semileptonic modes with photons y,z] ( y,z] ( aa] < y,z] < <

5:50 2:65 5 :3 6 :1 5

 

0:28 ) 10 0:20 ) 10 10 10 10 









; ; ; ; ;

44

Meson Summary Table Hadronic modes with photons

+ 0 + 0 (DE) + 0 0 + + + + 3

y,z] ( z,bb] ( y,z] ( y,z] ( z] ( z] <

;

2:75 0:15 ) 10 4 4:4 0:8 ) 10 6 7:4 +52::59 ) 10 6 1:04 0:31 ) 10 4 1:10 0:32 ) 10 6 1 :0 10 4 CL=90% 







; ;

;



;









;

;

;



Leptonic modes with `` pairs

e + e  

6 6 :0 ( 2:48 ( 7:06 < 5 < 4 :1

<

+    e + e e + e ;

+  e + e ; e + e + ;

+  + ;

10 10 0:20 ) 10 0:31 ) 10 10 10 

<



 









; ; ; ; ; ;

5 6 8 8 7 7

CL=90% CL=90% CL=90% CL=90%

205 205 133 125 227 227

+ + e+ e 0

247 236 247 236 223 185

3 0

Lepton Family number (LF), Lepton number (L), S = Q (SQ) violating modes, or S = 1 weak neutral current (S1) modes + +e  SQ 12 10 8 CL=90% 203 e ;

+ +  + e+ e + +

+ + 0

 e+ e+

+ e + + e + e+

+ e + e+ e+

+ + +

e 0 e+  e +

SQ S1 S1 S1 S1 LF LF LF LF L L L L L

;

;

;

;

;

;

;

; ;

<

:

;



3 :0 10 6 CL=95% ( 2:88 0:13 ) 10 7 ( 8:1 1:4 ) 10 8 S=2.7 ( 1:6 +10::88 ) 10 10 < 4 :3 10 5 CL=90% < 2 :0 10 8 CL=90% d] < 4 10 3 CL=90% < 2 :8 10 11 CL=90% < 5 :2 10 10 CL=90% < 5 :0 10 10 CL=90% < 6 :4 10 10 CL=90% d] < 3:0 10 9 CL=90% d] < 3:3 10 3 CL=90% < 3 10 3 CL=90% cc] < 3:6 10 7 CL=90% <

;











;

;

;



;

;



;



;



;



;



;



;



;



;



;



;



151 227 172 227 205 236 236 214 214 214 227 172 236 228 227

Modes with photons or `` pairs y, ] ( (  ] ( (

;

;



;

1:79 4:69 4 :9 2:80

   

0:05) 0:30) 1 :8 ) 0:07)

   

10 10 10 10

; ; ; ;

3 5 8 6

206 206 231 249

Semileptonic modes

e e gg] ( 6 9 0 4 ) 10 4 229 CP violating (CP) and S = 1 weak neutral current (S1) modes 

:

CP S1 S1 S1

+ ; e+ e; 0 e+ e;

K 0L



:

1 :4 3 :2 < 1 :4  ] ( 3:0 +11::52 )



<



<



;

 

;

10 10 10 10

; ; ;

5 7 7 9

CL=90% CL=90% CL=90%

;

I(J P ) = 21 (0;) m KL ; m KS = (0:5292  0:0010)  1010 h s 1 (S = 1.2) Assuming CPT = (3:483  0:006)  10 12 MeV Assuming CPT = (0:5290  0:0016)  1010 h s 1 (S = 1.2) Not assuming CPT Mean life  = (5:18  0:04)  10 8 s (S = 1.1) c = 15:51 m Slope parameter g w] (See Particle Listings for quadratic coecients) 0 = 0:678  0:008 (S = 1.5) K 0L ! + KL decay form factors x] Assuming -e universality + (K 0 3 ) = + (K 0e3 ) = 0:0300  0:0020 (S = 2.0) 0 (K 0 3 ) = 0:030  0:005 (S = 2.0) Not assuming -e universality + (K 0e3 ) = 0:0291  0:0018 (S = 1.5) + (K 0 3 ) = 0:033  0:005 (S = 2.3) 0 (K 0 3 ) = 0:027  0:006 (S = 2.3) K 0e3 fS /f+ < 0:04, CL = 68% K 0e3 fT /f+ < 0:23, CL = 68% K 0 3 fT /f+ = 0:12  0:12 KL ! e + e : K  = ; 0:33  0:05 KL ! + : K  = ; 0:158  0:027 KL ! e + e e + e : e K  = ; 0:14  0:22 KL ! + e + e : a1 /a2 = ; 0:734  0:022 GeV2 KL ! 0 2 : aV = ; 0:54  0:12 (S = 2.8) ;

;

;

;

;





I(J P ) = 21 (0;)

K0

50% KS , 50% KL Mass m = 497:648  0:022 MeV m K 0 ; m K = 3:972  0:027 MeV (S = 1.2) Mean Square Charge Radius   r2 = ; 0:076  0:018 fm2 (S = 1.1) T-violation parameters in K 0 -K 0 mixing x] Asymmetry AT in K 0 -K 0 mixing = (6:6  1:6)  10 3 CPT-violation parameters x] Re  = (2:9  2:7)  10 4 Im  = (0:02  0:05)  10 3 m K 0 ; m K 0 / m average < 10 18, CL = 90% dd] (; K 0 ; ; K 0 )/m average = (8  8)  10 18







;

;

;

;

;

;

;

;

;

K 0S

I(J P ) = 21 (0;) ;

;

;

;

K 0S DECAY MODES 0 0 + +

Scale factor/ p Condence level (MeV/c)

Hadronic modes

(31:05 0:14) % (68:95 0:14) % ( 3:2 +11::20 ) 10 7 

; ;

;

Fraction (;i /;)

0



;



;

;

;

CP-violation parameters ee] L = (0:327  0:012)%  00 = (2:276  0:014)  10 3  + = (2:288  0:014)  10 3  = (2:284  0:014)  10 3  00 / + = 0:9950  0:0008 hh] (S = 1.6) Re( /) = (1:67  0:26)  10 3 hh] (S = 1.6) Assuming CPT + = (43:52  0:06) (S = 1.3) 00 = (43:50  0:06) (S = 1.3)  =SW = (43:51  0:05) (S = 1.2) ;

Mean life  = (0:8953  0:0006)  10 10 s (S = 1.4) Assuming CPT Mean life  = (0:8958  0:0006)  10 10 s (S = 1.2) Not assuming CPT c = 2:6842 cm Assuming CPT CP-violation parameters ee] Im(+ 0 ) = ; 0:002  0:009 Im(000 ) = ; 0:05  0:13 CP asymmetry A in + e + e = (; 1  4)%

S=1.1 S=1.1

209 206 133

139 225 249 231

;

;

;

;

0

;



;







45

Meson Summary Table 

;

K K K K







CP asymmetry A in K 0L ! + e + e = (13:8  2:2)% CP from K 0L ! e + e e + e = ; 0:23  0:09 CP from K 0L ! e + e e + e = ; 0:09  0:09 0 = 0:0012  0:0008 j for K 0L ! + 0 = 0:004  0:006 f for K 0L ! +  + = (2:35  0:07)  10 3 + = (44  4) 0 + / < 0:3, CL = 90% ;

;

;

;

;

;



e e Called K 0e3 . 

gg] (38:81



0:27 ) %

S=1.1

229

gg] (27:19



0:25 ) %

S=1.1

216

Called K 0 3 . ( atom)  ( 1 06 0 11 ) 10 7 188 0 e  gg] ( 5 18 0 29 ) 10 5 207 Hadronic modes, including Charge conjugationParity Violating (CPV) modes 3 0 (21 05 0 23 ) % S=1.1 139 





+ + 0 0

;

 



 

0 0 + 0 2 0 e+ e



:



:





;

;

:

(12:59 0:19 ) % ( 2:090 0:025) 10 3 ( 9:32 0:12 ) 10 4 

CPV CPV

e e

:

:

0

;











;

;

S=1.6 S=1.1 S=1.1

Semileptonic modes with photons

y,gg,ii] ( 3:53 0:06 ) 10 3 ( 5:7 +00::67 ) 10 4 



;

;

;

2 3 e+ e ;

+ ; e+ e;

+ ;

< 5 :6 y,ii] ( 4:39 ii] ( 1:41 ( 2 :3

10 0:12 ) 10 0:12 ) 10 0:4 ) 10 

  

 



6 5 6 8

; ; ; ;

Other modes with photons or `` pairs ( 5:90 0:07 2 :4 (10:0 0:5 ( 3:59 0:11 ii] ( 5:95 0:33 ii] ( 1:0 +00::86 

<







;

) 10 10 ) 10 ) 10 ) 10 ) 10 











S1 ( S1 ( S1 ii] ( S1 < S1 ( S1 ( CP,S1 jj] < CP,S1 jj] < CP,S1 kk] < LF gg] < LF gg] < LF gg] <

; ; ; ; ;

;































133 206 209

S=1.8 S=2.8

209 206 231 231

4 S=1.1 7 CL=90% 6 S=1.5 7 S=1.3 7 8

249 249 249 225 249 225

;

7:27 0:14 ) 10 9 9 +64 ) 10 12 3:11 0:19 ) 10 7 6 :6 10 9 CL=90% 2:69 0:27 ) 10 9 3:75 0:27 ) 10 8 3 :8 10 10 CL=90% 5 :1 10 10 CL=90% 5 :9 10 7 CL=90% 4 :7 10 12 CL=90% 4:12 10 11 CL=90% 6 :2 10 9 CL=90% 

;

95%

289 307 309 223

;

;

;

;

;

;

;

;

;

;

;

;

p (MeV/c) 43





y



302 y

{

539

Mass m = 1402  7 MeV Full width ; = 174  13 MeV (S = 1.6)

K1 (1400) DECAY MODES

K (892) K K f0 (1370) K! K 0 (1430) K0 

Fraction (;i /;) (94 6 ) % ( 3:0 3:0) % ( 2:0 2:0) % ( 1:0 1:0) % not seen seen

p (MeV/c) 402 292

 

{



284





y

613

I(J P ) = 21 (1;)

K  (1410)

Mass m = 1414  15 MeV (S = 1.3) Full width ; = 232  21 MeV (S = 1.1)

K (892) K K K0 

Fraction (;i /;) > 40 % ( 6:6 1:3) % < 7 % seen 

K 0 (1430) ll]

p Condence level (MeV/c) 95% 410 612 95% 305 619

I(J P ) = 21 (0+)

Mass m = 1412  6 MeV Full width ; = 294  23 MeV K 0 (1430) DECAY MODES  

K

225 249 206 209 225 249 177 231 231 238 225 217

Fraction (;i /;) (42 6 ) % (28 4 ) % (16 5 ) % (11:0 2:0) % ( 3:0 2:0) % seen

I(J P ) = 21 (1+)

 

Charge conjugation  Parity (CP) or Lepton Family number (LF) violating modes, or S = 1 weak neutral current (S1) modes

+ ; e+ e; + ; e+ e; 0 0 e+ e;

+ ; e + e ; e+ e; e+ e; 0 + ; 0 e+ e; 0 e   e  e    0  e 

;



K (1410) DECAY MODES

Hadronic modes with photons or `` pairs

;





K1 (1400)

229 216

;



K (892) K! K f0 (1370) K0 

Scale factor/ p Condence level (MeV/c)

:



;

I(J P ) = 21 (1+)



;

Semileptonic modes

 





K1 (1270) DECAY MODES K K 0 (1430)



` `





Full width ; = 90  20 MeV n]



Fraction (;i /;)

100 % ( 2:30 0:20) 10 3 ( 9:9 0:9 ) 10 4 < 7 10 4

Mass m = 1273  7 MeV n]

T-violation parameters Im( ) in K 0 3 = ; 0:007  0:026 CPT invariance tests 00 ; + = (0:2  0:4) Re( 32 + + 31 00 ); 2L = (; 3  35)  10 6 S = ;Q in K 03 decay Re x = ; 0:002  0:006 Im x = 0:0012  0:0021 K 0L DECAY MODES

p Condence level (MeV/c)

Fraction (;i /;) 

K1 (1270)

;





mass m = 891:66  0:26 MeV mass m = 896:10  0:27 MeV (S = 1.4) full width ; = 50:8  0:9 MeV full width ; = 50:7  0:6 MeV (S = 1.1)





;





K K0 K K

;

;



(892) (892)0 (892) (892)0

 

;

;

 

K (892) DECAY MODES

;

;

I(J P ) = 21 (1;)

K  (892)

Not assuming CPT + = (43:4  0:7) (S = 1.3) 00 = (43:7  0:8) (S = 1.2)  = (43:5  0:7) (S = 1.3)

Fraction (;i /;) (93 10) %

p (MeV/c) 611



K 2 (1430)

I(J P ) = 21 (2+)

K 2 (1430) K 2 (1430)0 K 2 (1430) K 2 (1430)0 











K 2 (1430) DECAY MODES  

K K (892) K (892) K 



mass m = 1425:6  1:5 MeV (S = 1.1) mass m = 1432:4  1:3 MeV full width ; = 98:5  2:7 MeV (S = 1.1) full width ; = 109  5 MeV (S = 1.9) Fraction (;i /;) (49:9 1:2) % (24:7 1:5) % (13:4 2:2) % ( 8:7 0:8) %

Scale factor/ p Condence level (MeV/c)





 

S=1.2

619 419 372 318

46

Meson Summary Table K! K+ K K! K0

( 2:9 0:8) % ( 2:4 0:5) 10 ( 1:5 +31::40 ) 10 < 7 :2 10 < 9 10 



;









K  (1680)

;

3 3 4 4

;

; ;

S=1.1 S=1.3 CL=95% CL=90%

311 627 486 100 626

CHARMED MESONS (C = 1)

D + = cd, D 0 = cu, D 0 = c u, D = c d, similarly for D 's ;

I(J P ) = 21 (0;) Mass m = 1869:4  0:5 MeV (S = 1.1) Mean life  = (1040  7)  10 15 s c = 311:8 m c-quark decays ;(c ! `+ anything)/;(c ! anything) = 0:096  0:004 oo] ;(c ! D (2010)+ anything)/;(c ! anything) = 0:255  0:017 CP-violation decay-rate asymmetries ACP (K 0S ) = ; 0:016  0:017 ACP (K 0S K ) = 0:07  0:06 ACP (K + K ) = 0:002  0:011 ACP (K K 0 ) = ; 0:02  0:05 ACP ( ) = ; 0:014  0:033 ACP ( + ) = ; 0:02  0:04 D + ! K (892)0 `+  form factors rv = 1:62  0:08 (S = 1.5) r2 = 0:83  0:05 r3 = 0 :0  0 :4 ;L /;T = 1:13  0:08 ;+ /; = 0:22  0:06 (S = 1.6)

D

I(J P ) = 21 (1;)

Mass m = 1717  27 MeV (S = 1.4) Full width ; = 322  110 MeV (S = 4.2)

K (1680) DECAY MODES  

K K K (892)

Fraction (;i /;) (38:7 2:5) % (31:4 +42::71 ) % (29:9 +24::27 ) %



;

;

p (MeV/c) 781 570

;

618











K2

(1770) mm]

;



Mass m = 1773  8 MeV Full width ; = 186  14 MeV

K2 (1770) DECAY MODES

K

I(J P ) = 21 (2;)

K 2 (1430) K (892) K f2 (1270) 



K K!

K 3 (1780)



;

Fraction (;i /;)

 

K K (892) K K K 2 (1430)

(31 9 )% (20 5 )% (18:8 1:0) % (30 13 ) % < 16 % 

 



K2 (1820) nn]

95%

613 656 813 719 291

I(J P ) = 21 (2;)

Mass m = 1816  13 MeV Full width ; = 276  35 MeV K2 (1820) DECAY MODES

K 2 (1430) K (892) K f2 (1270) K! 



K 4 (2045)  

K K (892) K (892) K !K K  K (892)  



Fraction (;i /;)       

1:2) % 5 )% 5 )% 3:2) % 3:0) % 1:4) % 0:7) %

+  K 0 `+ ` K 0 e + e K 0 + 

:

<

:

<

:



:

CL=90% CL=90% CL=90%

8 +175 ) 10 4 6 : 8 0 :8 ) % 6 : 7 0 :9 ) % 7:0 + 32::00 ) % ( 4:5 + 10::08 ) % ( 3:7 0:5 ) %

( qq] ( ( (

+ e+  e K (892)0 e + e

;

 B(K (892)0 ! K

+) + e +  nonresonant e K + +  K (892)0 +   B(K (892)0 ! K + ) K + +  nonresonant (K (892) )0 e + e (K )0 e + e non-K (892) K + 0 +  0 `+ ` rr] 

K

;



;

S=1.1

863 722

10 3 CL=90%

863 851 717



;

;

;





{ { { { { { { 932 868 868 865

;





;

<

7 ( 4:00 ( 3 :7



 

0:32) % 0:3 ) %

;

;

851 712 846 825 930

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. K (892)0 `+ ` qq] ( 5:73 0:35) % K (892)0 e + e ( 5 : 5 0 :7 ) % S=1.4 K (892)0 +  ( 5 : 5 0 :4 ) % K 1 (1270)0 +  < 4 % CL=95% < 1 :0 % CL=95% K 2 (1430)0 +  0 e + e ( 2:5 1:0 ) 10 3 0 +  ( 3:4 0:8 ) 10 3  e + e < 2:09 % CL=90%  +  < 3:72 % CL=90% + 3  ` ` < 5 10 CL=90%  (958) +  < 1 :1 % CL=90%

722 722 717 493 380 774 769 657 651 854 684



( 3 :3 1 :2 < 9 < 1 :7 ( 3 :1



<

1:3 ) 10 % 10 10 1:5 ) 10

3

CL=90% 3 CL=90% 3 CL=90% 3

;



958 802 768 741 738 594 363

:



:

;

p (MeV/c)



:

<



I(J P ) = 21 (4+)

:





p (MeV/c) 327 681 185 638

Scale factor/ p Condence level (MeV/c)

Fraction (;i /;)

Inclusive modes e + anything (17 2 1 9 ) % K anything (27 5 2 4 ) % K 0 anything + K 0 anything (61 8 )% K + anything ( 55 16 )%  anything pp] 13 %  anything 18 %  e + anything 16 % Leptonic and semileptonic modes

K

Fraction (;i /;) seen seen seen seen

(9:9 (9 (7 (5:7 (5:0 (2:8 (1:4

;



Mass m = 2045  9 MeV (S = 1.1) Full width ; = 198  30 MeV

K 4 (2045) DECAY MODES

;

D modes are charge conjugates of the modes below.

;

p Condence level (MeV/c)





`

D + DECAY MODES

I(J P ) = 21 (3;)

Fraction (;i /;)



 

p (MeV/c) 794 288 654 53 441 607

dominant seen seen seen seen

Mass m = 1776  7 MeV (S = 1.1) Full width ; = 159  21 MeV (S = 1.3)

K 3 (1780) DECAY MODES















;

; ; ;



 

 













0

;

;

;

47

Meson Summary Table Hadronic modes with a K K0 + ( 2 82 + + K ss] ( 9 2 0 + ( 1 30 K (892)  B(K (892)0 ! K + ) 0 + ( 23 K 0 (1430)  B(K 0 (1430)0 ! K + ) ( 38 K (1680)0 +  B(K (1680)0 ! K + ) + + K nonresonant ( 88 K0 + 0 ss] ( 9 7 0 + K  ( 66 ( 65 K (892)0 + 0 0 0  B(K (892) ! K ) K 0 + 0 nonresonant ( 13 K + + 0 ss] ( 6 5 0 + ( 14 K (892)  total  B(K (892)0 ! K + ) ( 22 K 1 (1400)0 +  B(K 1 (1400)0 ! K + 0 ) K + + total ( 31 K + + 3-body ( 11 0 + 0 ( 45 K (892) total 0 +  B(K (892) ! K ) ( 29 K (892)0 + 0 3-body  B(K (892)0 ! K + ) + + K (892) 3-body (7  B(K (892) ! K 0 ) + + 0 K nonresonant tt] ( 1 2 K0 + + ss] ( 7 1 0 + K a1 (1260) ( 40  B(a1 (1260)+ ! + + ) ( 22 K 1 (1400)0 +  B(K 1 (1400)0 ! K 0 + ) ( 14 K (892) + + 3-body  B(K (892) ! K 0 ) K 0 0 + total ( 43 K 0 0 + 3-body (5 0 + + K nonresonant (9 K 3 + ss] ( 6 2 0 + + ( 21 K (892)  B(K (892)0 ! K + ) 0 0 + ( 20 K (892)   B(K (892)0 ! K + ) 0 + + ( 29 K (892) no-  B(K (892)0 ! K + ) K 0 + + ( 1 94 K 3 + nonresonant ( 43 K0K0K+ ( 18 ( 55 K+ K K0 + :

;







:



:



:



;





or K K K

862 845 714

0 :3 ) %

382

;



:





;

;



:



:



:



:



:





;





:



:



:



:



0:8 ) 10 3 

0 :9 3 :0 2 :5 0 :6

58

;

)% )% )% ) 10 3 

S=1.1

;

845 845 677 714

1 :1 ) % 1 :1 ) % 0 :9 ) %

845 816 422

0 :6 ) %

390

1 :1 ) % 0 :4 ) % 0 :9 ) %

612 612 690

0 :9 ) %

690

;

;

;

;









:



;







:

:

;

;





;

;

;

;

:



:



:



;

3 ) 10 3

688

0 :6 ) % 1 :0 ) % 0 :9 ) %

816 814 328



;

:



0 :6 ) %

390

:



0 :6 ) %

688

;



;



;

;

:





;

;



;

:



;

:





;



:





;



;



:



;

;

;



;

;

:



:



:



:



0 :9 5 4 0 :8 0 :8

)% ) 10 ) 10 ) 10 ) 10 







3 3 3 3

;

;

;

;

S=1.3

239

1:1 ) 10 3

645



;

;

0:35) 10 3 3:2 ) 10 4 0 :8 ) % 1:4 ) 10 4 





;

S=1.1

;

;

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. 0 + K  ( 6 :6 2 :5 ) % 0 K a1 (1260)+ ( 8 : 2 1 :7 ) % 0 + K a2 (1320) < 3 10 3 CL=90% 0 + K (892) ( 1:95 0:19) % K (892)0 + total tt] ( 2:1 1:4 ) % K (892)0 + S-wave tt] ( 1:7 1:6 ) % K (892)0 + P-wave < 1 10 3 CL=90% K (892)0 + D-wave (10 7 ) 10 3 K (892)0 + D-wave longitu< 7 10 3 CL=90% 







;





















dinal K 1 (1270)0 + K 1 (1400)0 + K 0 (1430)0 + K (1680)0 + K (892)0 + 0 total K (892)0 + 0 3-body K (892) + + total K (892) + + 3-body K + + total K + + 3-body K 0 0 + total K 0 0 + 3-body K (892)0 + + K (892)0 0 +   





( ( ( ( tt] (

7 5 :0 3 :8 1:47 6 :8 4 :3

;



;

;

;



;







<

( ( ( ( ( ( (

2 :1 3 :1 1 :1 4 :3 5 3 :2 3 :0

610 610 814 772 645

0:5 ) 10 3 



;

;

;

10 3 CL=90% ;

1 :3 ) % 0 :4 ) % 0:31) % 1 :4 ) % 1 :4 ) % | 0 :9 ) % 1 :1 ) % 0 :4 ) % 0 :9 ) % CL=90% 5 ) 10 3 1:2 ) 10 3 S=2.0 0:7 ) 10 3 S=1.3

  

 







 











K (892)0 + + no- K 0 + + K (892)0 a1 (1260)+

1:7 ) 10 3 0:35) 10 3 1:9 ) 10 3

645 524

3 3 3 3 4

925 908

1:1 ) 10 4

485

( 2:4 2:1 ) 10 4 | ( 6:8 1:4 ) 10 4 < 6 10 3 CL=90% ( 1:82 0:25) 10 3 S=1.2

908 883 848 763 845

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. +  ( 3:0 0:6 ) 10 3 0 + ( 1:05 0:18) 10 3 + ! < 7 10 3 CL=90%  + < 7 10 3 CL=90%  (958) + ( 5:1 1:0 ) 10 3  (958) + < 5 10 3 CL=90% f2 (1270) + ( 1:08 0:20) 10 3

848 766 763 655 680 348 485



0:19) % 0 :6 ) % 0:13) %

;

;

;

524 772 545 435

( 4 :4 ( 1:94 ( 9 :1

;

;



+ 0 + +

+ 0 + f0 (980) +  B(f0 ! + ) f2 (1270) +  B(f2 ! + ) + + nonresonant + + 0 0)  +  B( ! + 0) ! +  B(! ! + 3 +2

  

Pionic modes

;

;

( ( ( ( uu] (

2 :6 3 :1 2 :2 1:05 1 :9

( 6 :1

;

;

;

;

;

    



487 390 382 58 690 690 688 688 612 612 610 610 645 239

;



;



0 :7 ) 0 :4 ) 0 :5 ) 0:18) 0 :5 )

    

10 10 10 10 10

















; ;

;

;

;





;



Hadronic modes with a K K pair

K+K0 K+K + ;

 +  B( ! K + K ; ) K + K  (892)0  B(K 0 ! K ; + ) K + K ; + nonresonant K0K0 + K  (892)+ K 0  B(K + ! K 0 + ) + K K; + 0  + 0  B( ! K + K ; ) +  B( ! K + K ; ) K + K ; + 0 non- K+K0 + ; K0K; + + K  (892)+ K  (892)0  B2 (K  (892)+ ! K 0 + ) K 0 K ; + + (non-K + K 0 ) K+K; + + ;

( ss] ( ( (

5 :9 8 :9 3 :1 2 :9

   

0:6 0:8 0:3 0:4

) ) ) )

   

{

766 669

;



0

;

;





;

;



0

;

;





;

;



;

;

y

;



10 10 10 10

3 3 3 3

;

S=1.2

;

;

;

0:9 ) 10 3 | ( 2:1 0:9 ) % ( 4 :6



792 744 647 613 744 741 611

;





| ( 1:1 0:5 ) % < 7 10 3 CL=90% ( 1:5 + 00::76 ) % ( 4:0 0:7 ) 10 3 ( 5:5 0:8 ) 10 3 ( 1:2 0:5 ) %

682 619 258 682 678 678 280

10 3 CL=90% 1:3 ) 10 4

678 600

Fractions of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.  + ( 6:2 0:6 ) 10 3  + 0 ( 2 : 3 1 :0 ) % + < 1 :5 % CL=90% 0 + ( 4:3 0:6 ) 10 3 K K (892) 0 + ( 3:1 1:4 ) % K (892) K ( 2:6 1:1 ) % K (892)+ K (892)0

647 619 258 613 611 280





;

;









;

;



<

7 :9 ( 2 :5









677 328 199 714 422 422 422 422 422

;





;

;

;









;











Doubly Cabibbo suppressed (DC) modes, C = 1 weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

K+ + K + 0 K (892)0 + K + + nonresonant K+K+K K+ + e+ e ;



;

;

;

+ + ; + + ; K + e+ e; K + + ; + e   K + e   ; + + e e ;

+ +

DC DC DC DC DC DC C1 C1 C1

( ( vv] ( ( ( vv] <

ww] ww] LF gg] LF gg] L L

< < < < < < < < <

7 :0 2 :6 3 :7 2 :5 8 :7 1 :3 5 :2 8 :8 5 :6 2 :0 9 :2 3 :4 6 :8 9 :6 4 :8

    

1:5 1:2 1:7 1:2 2:1

) ) ) ) )

              

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

4 4 4 4 5 4 5 6 4 4 6 5 5 5 6

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

845 678 714 845 550 527 929 917 757 870 856 926 866 929 917

48

Meson Summary Table ; + e + ; + + K ; e+ e+ K ; + + K ; e + +

L L L L L L

K (892) + + 

;

< < < < < <

5 :0 5 :6 1 :2 1 :3 1 :3 8 :5

     

10 10 10 10 10 10

; ; ; ; ; ;

5 4 4 5 4 4

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

926 757 870 856 866 703

I(J P ) = 21 (0;) Mass m = 1864:6  0:5 MeV (S = 1.1) m D ; m D 0 = 4:78  0:10 MeV (S = 1.1) Mean life  = (410:3  1:5)  10 15 s c = 123:0 m m D 0 ; m D 0 < 7  1010 h s 1 , CL = 95% xx] 1 2 (;D 0 { ;D 0 )/; = 2y = 0:016  0:010 1 2 ;(K + `  (via D 0 ))/;(K `+  ) < 0:005, CL = 90%  ;  ; ; K + (via D 0 ) /; K + < 4:1  10 4, CL = 95% CP-violation decay-rate asymmetries ACP (K + K ) = 0:005  0:016 ACP (K 0S K 0S ) = ; 0:23  0:19 ACP ( + ) = 0:021  0:026 ACP ( 0 0 ) = 0:00  0:05 ACP (K 0S ) = ; 0:03  0:09 ACP (K 0S 0 ) = 0:001  0:013 ACP (K ) = 0:08  0:09 0 ) = ; 0:03  0:09 ACP (K 0 ) = 0:09 +0 25 ACP (K 0 22 CPT-violation decay-rate asymmetry ACPT (K ) = 0:008  0:008

D0





`













+ 0 K + K (1700)+  B((1700)+ K (892) +

;

;

yy] ( 6:87 ( 6 :5 (53 (42 ( 3 :4 + pp] < 13 ( 1 :7 



;





;



;

`

;

;



;

;



;



;

;



;

;

<



;

)

qq] ( ( ( ( ( (

<



;

3:43 3:58 3:19 1 :1 + 1 :8 1:43 





;





1 :2 1 :4 ( 3 :6







S=1.3 CL=90%

S=1.2 S=1.1 S=1.6 S=1.6

10 3 CL=90% 10 3 CL=90% 0:6 ) 10 3 



;

;

;

A fraction of the following resonance mode has already appeared above as a submode of a charged-particle mode. K (892) e + e ( 2:15 0:35) % 

;



Hadronic modes with a K K + ( 3 80 0 0 K ( 2 30 0 + K ss] ( 5 97 K 0 0 ( 1 55 + K0! ( 39  B(! ! + ) K 0 f0 (980) ( 28 +  B(f0 (980) ! + ) K 0 f2 (1270) ( 26 +  B(f2 (1270) ! + ) K 0 f0 (1370) ( 51 +  B(f0 (1370) ! + ) ;

:

;



:



:



:

:

;



;

:

;

:

;

:

;

;

;

;

;

;

;

;



or K K K

;





;

S=1.1



;



549

2:3 ) 10 4 1 :4

262

1:2 ) 10 3 1 :3

{







;

;

;

( 1:97



0:13) %

711

( 1:87



0:27) %

711

( 3:0 + 00::64 ) 10 3

378

( 5:3 + 41::24 ) 10 3

379

0:5 ) 10 3

46

( 1:04 + 00::50 19 ) % | : 1:3 ) 10 3

844 843 711

2:2 ) 10 3 0:31) % 0 :4 ) % 2:1 ) 10 3 2:1 ) 10 3

843 812 609 609 416



;



;





;

;



:



:



:





;

;



;

:



:



:



0:6 ) %

327

:



0:4 ) %

685

:



:



:



:







;

;

;

;

;

;

;



:



:



:



:



:



:



:



:



:



:



;

;





;

;

;



;



;



685

0:3 ) 10 3

484

0:25) % 1 :3 ) % 0:25) 10 3 0:4 ) % 1 :7 ) %

812 812 772 670 416



;

;





;

;

;



2:1 ) 10 3

;

;

;



1:1 ) 10 3

416

1:2 ) 10 3

484

1:0 ) 10 3

685

2 :3 ) % 0 :4 ) % 0:6 ) %

812 771 643







;

;

;

;



0:6 ) 10 3

582

0:5 ) % 2:4 ) 10 3

605 410

3

768 544 520 544 538 434



;

;

;

;

;





:



:



;



;

;

;

0:6 ) 10 3 0 :4

y

;

;

861 860 842 673 670

842 844 675

;





0:09) % 0:22) % 0:35) % 0:12 ) % 0:16 0:9 ) 10 4

;

S=1.3

;

;

;

719

;





K0 0 0 ( 93 K (892)0 0  B(K (892)0 ! K 0 0 ) 0 0 0 K nonresonant ( 85 K + + ss] ( 7 46 + 0 K  total ( 62 K + 0 3-body ( 47 0 0 ( 97 K (892)  0 +  B(K (892) ! K ) K a1 (1260)+ ( 36  B(a1 (1260)+ ! + + ) ( 15 K (892)0 + total  B(K (892)0 ! K + ) ( 95 K (892)0 + 3-body  B(K (892)0 ! K + ) K1 (1270) + tt] ( 2 9  B(K1 (1270) ! K + ) + + K nonresonant ( 1 74 0 K0 + ss] (10 9 0 + 0 K   B( ! ) ( 1 74 0) K 0 !  B(! ! + ( 21 + ( 44 K (892)  0  B(K (892) ! K ) ( 48 K (892)0 0  B(K (892)0 ! K 0 0 ) tt] ( 4 5 K1 (1270) +  B(K1 (1270) ! K 0 0 ) ( 47 K (892)0 + 3-body  B(K (892)0 ! K 0 0 ) 0 nonresonant K0 + ( 23 0 K + + ( 40 0 + 0 ( 12 K (892) 0 +  B(K (892) ! K ) ( 27 K (892)0   B(K (892)0 ! K + ) + 0  B( ! ) 0) K + !  B(! ! + ( 27 0 ( 65 K (892) !  B(K (892)0 ! K + )  B(! ! + 0 ) K0 + + ( 64 K0K+K ( 1 03 K 0   B( ! K + K ) ( 47 K 0 K + K non- ( 56 0 0 0 ( 92 KS KS KS K+K K + ( 2 04 ( 41 K + K K (892)0 0 +  B(K (892) ! K ) 

821 692 927

;



;



867 867 864 861 860 719

;





( 1 :1

;

;

0:14) % 0:18) % 0:17) % 0 :8 ) % 0 :6 0 :8 ) % 0:23) %

711

;

;

;

{ { { { { { {

( 2:0 + 20::69 ) 10 4

;

;



0:28) % 0 :8 ) % 4 )% 5 )% 0 :6 ) % 0 :4 % 0 :8 ) %

46

;

+)

;

;



( 2:1 + 10::09 ) 10 3

;



( 5:4 +123::04 ) 10 4 ss] (13:0 0:8 ) % (10:1 0:8 ) % ( 7:4 1:6 ) 10 3





367

;

0)

;

+

;

( 1:0 + 00::74 ) 10 3 ;

K 0 (1430)  B(K 0 (1430) ! K 0 ) K 0 (1430)0 0  B(K 0 (1430)0 ! K + ) K (1680) +  B(K (1680) ! K 0 ) K + 0 nonresonant

Scale factor/ p Condence level (MeV/c)





;

 B(K (892)0 ! K



;

Semileptonic modes

K `+  K e + e K +  K 0 e + e K 0 e + e K (892) e + e  B(K (892) ! K 0 K + +  (K (892) ) +  e + e

!

+ 0)

 B(K (892) ! K 

378

;





;

K (892)0 0

711





:

Inclusive modes

;

0 :3 ) %

( 6:1 + 10::28 ) 10 3 ;

;



D 0 modes are charge conjugates of the modes below.

e + anything

+ anything K anything K 0 anything + K 0 anything K + anything  anything  anything

;

;

;

Fraction (;i /;)

;

;

K



D 0 DECAY MODES

;



;



:

;

;

;



;



;

;



;



;

;



`

;

;

;





;

;

( 3 :9

;



;

;

K (892) +  B(K (892) ! K 0 ) K 0 (1430) +  B(K 0 (1430) ! K 0 ) K 2 (1430) +  B(K 2 (1430) ! K 0 ) K (1680) +  B(K (1680) ! K 0 ) K (892)+  B(K (892)+ ! K 0 + ) 0 K + nonresonant

;

;

;

;

;

;

;





;

:



:



:



:



:



:



:



1:8 ) 10 0:10) % 0:6 ) 10 0:9 ) 10 1:6 ) 10 0:30) 10 1:7 ) 10 











;

3 3 4 4 5

;

;

;

;

;

y

49

Meson Summary Table K +   B( ! K + K )  K (892)0  B( ! K + K )  B(K (892)0 ! K + ) K + K K + nonresonant ;

;



( 3 :8 ( 1 :0

 

1:6 ) 10 5 0:2 ) 10 4

422

1:4 ) 10 5

434





;

;

y

;



;

( 3 :1





;

Fractions of many of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. (Modes for which there are only upper limits and K (892)  submodes only appear below.) K0 ( 7:7 1:1 ) 10 3 K 0 0 ( 1:55 + 00::12 16 ) % K + (10:1 0:8 ) % S=1.2 K0! ( 2 : 3 0 :4 ) % K 0  (958) ( 1:88 0:28) % K0 ( 9:4 1:1 ) 10 3 K a1 (1260)+ ( 7 :2 1 :1 ) % K 0 a1 (1260)0 < 1 :9 % CL=90% K 0 f2 (1270) ( 4:7 + 42::14 ) 10 4 K a2 (1320)+ < 2 10 3 CL=90% K (892) + ( 5 :9 0 :4 ) % S=1.1 0 0 K (892) ( 2 :8 0 :4 ) % S=1.1 0 + K (892) total ( 2 : 2 0 :5 ) % K (892)0 + 3-body ( 1:42 0:31) % + 0 K  total ( 6 : 2 0 :4 ) % K + 0 3-body ( 4:7 2:1 ) 10 3 0 0 K (892)  ( 1:45 0:32) % K (892)0 0 transverse ( 1 :5 0 :5 ) % K (892)0 0 S-wave ( 2 :8 0 :6 ) % K (892)0 0 S-wave long. < 3 10 3 CL=90% K (892)0 0 P-wave < 3 10 3 CL=90% K (892)0 0 D-wave ( 1 :9 0 :6 ) % K (892) + ( 6 :6 2 :6 ) % K (892) + longitudinal ( 3 :2 1 :3 ) % K (892) + transverse ( 3 :4 2 :0 ) % + K (892)  P-wave < 1 :5 % CL=90% + K1 (1270) tt] ( 1:14 0:31) % + K1 (1400) < 1 :2 % CL=90% K 1 (1400)0 0 < 3 :7 % CL=90% K 0 (1430) + ( 9:8 + 21::03 ) 10 3 K 0 (1430)0 0 ( 8:6 + 62::83 ) 10 3 + K 2 (1430) ( 2:0 + 10::37 ) 10 3 K 2 (1430)0 0 < 3 :3 10 3 CL=90% K (1680) + ( 8:2 + 33::95 ) 10 3 S=1.2 0 K (892)0 + ( 1 : 8 0 :9 ) % K (892)0  ( 1 : 8 0 :4 ) % K +! ( 3 :0 0 :6 ) % K (892)0 ! ( 1 : 1 0 :4 ) % + K  (958) ( 6:9 1:8 ) 10 3 K (892)0  (958) < 1 :0 10 3 CL=90% + K  ( 7:6 3:1 ) 10 5 0 + ( 6:1 2:5 ) 10 5 K K K (892) ( 3:0 0:6 ) 10 4  K (892)0 



;

;

;





0





;



;



;

;





;

;

;









;





;



;



;







;























;

;



;





;



;







;

;



;



;

;



;



;

;













;

;



;



;

;

;

;

;







;







;

0





0















+ 0 0 + 0 + +

Pionic modes ( ( ( (

;

;

;





;

;

;

;

;







;

;

;







;

;

;

;

272

10 4 CL=90% 2:9 ) 10 3 2:0 ) 10 3

677 673 600

Fractions of most of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. K (892)0 K 0 < 1 :7 10 3 CL=90% K (892)+ K ( 3:8 0:8 ) 10 3 < 9 10 4 CL=90% K (892)0 K 0 K (892) K + ( 2:0 1:1 ) 10 3  0 ( 7:5 0:5 ) 10 4  ( 1:4 0:5 ) 10 4 ! < 2 :1 10 3 CL=90%  + ( 1:06 0:28) 10 3 0  ( 5:7 3:0 ) 10 4  + 3-body (7 5 ) 10 4 0 + K (892) K + c.c. aaa] < 7 10 4 CL=90% ( 1:4 0:5 ) 10 3 K (892)0 K (892)0

608 610 608 610 645 489 238 614 250 614 531 272

1:38 8 :4 1 :1 7 :3

   



;

;

;

;

;

0:05) 10 3 2:2 ) 10 4 0 :4 ) % 0:5 ) 10 3 





;

;

;

( 3:89 + ( 7 :1 ( 6 :9 < 1 :1

772 673 675 670 565 520 327 323 262 197 711 711 685 685 609 609 416 416 416 416 416 416 416 416 416 416 484 386 387 378 379 367 368 46 643 582 605 410 479 119 422 y y

922 922 907 880

;  

791 788 739 608

0:5 ) 10 3

610

2:3 ) 10 3 1:0 ) 10 3 10 4 CL=90%

739 739 608

0:7 ) 10 3

610







;

;

;

;

( 2 :5 ( 2 :3 ( 5 :3 < 6 ( 1 :3



 













;

;

;

;

;

;

;

;

;



0:12 ) 10 3 S=1.2 0:15 1:9 ) 10 4 S=1.2 1:0 ) 10 3 10 3 CL=90% 

;



;



2 ) 10 4

:

;

Hadronic modes with a K K pair

K+K K0K0 K0K + K (892)0 K 0  B(K 0 ! K + ) K (892)+ K  B(K + ! K 0 + ) K 0 K + nonresonant 0 K K+ K (892)0 K 0  B(K 0 ! K + ) K (892) K +  B(K ! K 0 )

739 743 740 677 614 250 301 531

:

;





2:3 ) 10 3 1 :9 0:35) 10 3 10 4 0:23) 10 3 1:4 ) 10 4 1:5 ) 10 4 2:3 ) 10 4 10 4

;

;

<

;

;

K 0 K + nonresonant ( 38 + K+K 0 ( 1 24 K 0S K 0S 0 59 K+K + zz] ( 2 49  +  B( ! K + K ) ( 53 0  B( ! K + K ) ( 29 K + K 0 3-body ( 90 K (892)0 K + + c.c. aaa] 5  B(K 0 ! K + ) (6 K (892)0 K (892)0  B2 (K 0 ! K + ) + + K K nonresonant 8 ( 75 K0K0 + + + 0 K K ( 31



:

:



:



:



:



<

;









;

;

;

<

;

;

;

:

;

:





;



;



;



;



;



;



;



;













;

;

;

;

;





;









;















;

;















;











Radiative modes

0 ! 

;



;

;

;

;

;

;

;

;

;

;

2 :4 10 2 :4 10 + 0 :7 ( 2:5 0:6 ) 10 < 7 :6 10

<



<





;



;

K (892)0

;

4 CL=90% 4 CL=90% 5 4 CL=90%

;

;



Doubly Cabibbo suppressed (DC) modes, C = 2 forbidden via mixing (C2M) modes, C = 1 weak neutral current (C1) modes, Lepton Family number (LF) violating modes, or Lepton number (L) violating modes C2M 17 10 4 CL=90% K + `  (via D 0 ) K+ DC ( 1 38 0 11) 10 4 C2M 16 10 5 CL=95% K + (via D 0 ) K (892)+ ( 3 0 + 31 83 ) 10 4 0 K+ ( 5 6 1 7 ) 10 4 + K+ DC ( 3 1 1 0 ) 10 4 0 + + C2M 4 10 4 CL=90% K (via D ) + 10 10 3 CL=90% K or 0 + + K (via D ) C2M 4 10 4 CL=90%

anything (via D 0 ) ;

<

`

;

:

:

;

<



;

;

;

;

;

<

;





:

;

:

:



:

:



:

<

;

:

: :

;





;

;

;









:

;



;

;

;

;

;

;

e+ e;

+ ; 0 e+ e; 0 + ;  e+ e;  + ; + ; e+ e; 0 e + e ; + ; + ; 0 + ; ! e+ e; ! + ; K ; K + e+ e;  e+ e; K ; K + + ;  + ; K 0 e+ e; K 0 + ; K ; + e+ e; K  (892)0 e + e ; K ; + + ; K  (892)0 + ; + ; 0 + ;

 e 

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1

C1 C1 C1 LF

<

< < < < < < < < < < < < < < < <

ww] ww]

< < < <

ww]

<

ww]

<

gg]

<

< <

2 :8 6 :2 4 :1 4 :5 1 :8 1 :1 5 :3 3:73 1 :0 3 :0 2 :2 1 :8 8 :3 3:15 5 :2 3 :3 3 :1 1 :1 2 :6 3:85 4 :7 3:59 2 :4 8 :1 8 :1



                        

;

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

; ; ; ; ;

; ; ; ; ;

; ;

; ; ; ;

;

5 6 6 5 4 4 4 4 4 5 5 4 4 4 5 5 5 4 4 4 5 4 5 4 6

; ;

; ;

; ;

;

;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

771 768 654 719

{

861 861 711 844 812 812

{ {

932 932 926 927 915 852 838 922 771 894 754 768 751 791 654 710 631 866 852 861 719 829 700 863 929

50

Meson Summary Table 0 e    e   + ; e   0 e   ! e   K ; K + e    e   K 0 e   K ; + e   K  (892)0 e   ; ; + + e e + c.c. ; ;

+ + + c.c. ; ; + + K e e + c.c. K ; ; + + + c.c. K ; K ; e + e + + c.c. K ; K ; + + + c.c. ; ; + e + + c.c. K ; ; e + + + c.c. K ; K ; e + + + c.c.

LF LF LF LF LF LF LF LF LF LF L L L L L L L L L

gg] gg] gg] gg] gg] gg] gg] gg] gg] gg]

8 :6 1 :0 1 :5 4 :9 1 :2 1 :8 3 :4 1 :0 5:53 8 :3 1:12 2 :9 2:06 3 :9 1:52 9 :4 7 :9 2:18 5 :7

< < < < < < < < < < < < < < < < < < <

                  

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

5 4 5 5 4 4 5 4 4 5 4 5 4 4 4 5 5 4 5

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

924 848 911 767 764 754 648 862 848 714 922 894 861 829 791 710 911 848 754

D 2(2460)

J P = 2+ assignment strongly favored. Mass m = 2459  4 MeV (S = 1.7) m D (2460) ; m D (2460)0 = 0:9  3:3 MeV (S = 1.1) 2 2 Full width ; = 25 +87 MeV ;

D 2 (2460) modes are charge conjugates of modes below. 

 



;

Mass m = 1968:3  0:5 MeV (S = 1.2) m D ; m D = 98:87  0:31 MeV (S = 1.4) s Mean life  = (490  9)  10 15 s (S = 1.1) c = 147:0 m D +s form factors r2 = 1:60  0:24 rv = 1:92  0:32 ;L /;T = 0:72  0:18 ;

p (MeV/c) 43 137

Unless otherwise noted, the branching fractions for modes with a resonance in the nal state include all the decay modes of the resonance. D s modes are charge conjugates of the modes below. Scale factor/ p + D s DECAY MODES Fraction (;i /;) Condence level (MeV/c) ;

D (2010) modes are charge conjugates of the modes below.  

;

Fraction (;i /;) (67:7 0:5) % (30:7 0:5) % ( 1:6 0:4) %

 







p (MeV/c) 39 38 136

D1 (2420)0

I(J P ) = 21 (1+) I, J, P need conrmation. Mass m = 2422:2  1:8 MeV (S = 1.2) Full width ; = 18:9 +43 65 MeV :

D 1 (2420)0 modes are charge conjugates of modes below. D1 (2420)0 DECAY MODES D (2010)+ D+ 

;

;

D 2(2460)0

Fraction (;i /;) seen not seen

p (MeV/c) 355 474

I(J P ) = 21 (2+)

D 2 (2460)0 modes are charge conjugates of modes below. 

Fraction (;i /;)

D+ D (2010)+

seen seen

 

;



;

Inclusive modes (13 (39 (20 (64 (8

;

+   +  `+ `  `+ ` +  0 (958) `+ `  ` + `  0 (958) `+ `

K+K0 K+K + ;

J P = 2+ assignment strongly favored. Mass m = 2458:9  2:0 MeV (S = 1.2) Full width ; = 23  5 MeV

D 2 (2460)0 DECAY MODES

K anything K 0 anything + K 0 anything K + anything (non-K K) anything e + anything  anything

(18

+14 12 28 +18 14 17 + 6 5 +15 10 ;

)% )% )% )% )%

;

)%

;



;



{ { { { { {

Leptonic and semileptonic modes

:

;

I(J P ) = 0(0;)

 was F 

I(J P ) = 21 (1;) I, J, P need conrmation. Mass m = 2010:0  0:5 MeV (S = 1.1) m D (2010)+ ; m D + = 140:64  0:10 MeV (S = 1.1) m D (2010)+ ; m D 0 = 145:421  0:010 MeV (S = 1.1) Full width ; = 96  22 keV

D (2010) DECAY MODES D0 + D+ 0 D+



Ds

D (2010)



507 390

CHARMED, STRANGE MESONS (C = S = 1)





p (MeV/c)

seen seen



D (2007)0 modes are charge conjugates of modes below. Fraction (;i /;) (61:9 2:9) % (38:1 2:9) %

Fraction (;i /;)

 

D +s = cs, D s = c s, similarly for D s 's

I(J P ) = 21 (1;) I, J, P need conrmation. Mass m = 2006:7  0:5 MeV (S = 1.1) m D 0 ; m D 0 = 142:12  0:07 MeV Full width ; < 2:1 MeV, CL = 90%

 

;

D 2 (2460) DECAY MODES D0 + D0 +

D (2007)0

D (2007)0 DECAY MODES D0 0 D0

I(J P ) = 21 (2+)

p (MeV/c) 504 387

bbb] bbb] bbb] bbb]

( ( ( ( ( (

5 :0 6 :4 2 :0 3 :4 2 :5 8 :9

     

1 :9 1:5 0:5 1:0 0:7 3:3

) 10 3 )% )% )% )% ) 10 3 



;

S=1.3

{

908 751

;

Hadronic modes with a K K pair (including from a )

 + K + K  (892)0 f0 (980) +  B(f0 ! K + K ; ) K + K 0 (1430)0 K + K ; + nonresonant K0K0 + K  (892)+ K 0 K+K; + 0  + 0 +  + 0 3-body K + K ; + 0 non-

1:1 1:2 0 :9 0:9 2:3

)% )% )% )% ) 10 3

850 805 712 685 732

4 4 | ccc] ( 4:3 1:4 | ccc] ( 9 5 ccc] ( 6:7 2:3 ccc] < 2:6 < 9

) 10 3 ) 10 3

218 805 802 683 748 686 400 686 748

ss] ccc] ccc] ddd]

( ( ( ( (

3 :6 4 :4 3 :6 3 :3 4 :9

981 182 720

ccc] ( 7 (9

    

















;

;

;

)% )% )% % %

CL=90% CL=90%

51

Meson Summary Table K+K0 + ( K0K + + ( ccc] ( K (892)+ K (892)0 K 0 K + + (non-K + K 0 ) K+K + + ( ;

;





;



;



<

;

 + + ; ccc] K + K ; 0 + non- 0 +  ccc]  a1 (1260)+ ccc] + ; + + ; K K nonresonant

(

<

( ( (

2 :5 4 :3 5 :8 2 :9 7 :1 9 :7 2 :1 1:06 2 :5 7

  

 

0 :9 ) % 1 :5 ) % 2 :5 ) % % 2:2 ) 10 2:6 ) 10 10 0:35) % 0 :8 ) % 6 ) 10 





  

; ; ;

CL=90% 3 3 4 CL=90%

673

S=1.1 10 4 CL=90% 1:7 ) 10 3

959 824 732

1:2 ) 10 3 1:2 ) 10 3

559 493

2:5 ) 10 4

421

;

;

( 1:01 < 7 uu] ( 5:7

;

ccc] ( 3:5 uu] ( 3:3



 





;

;

;

;



;

uu] ( 4:4



;



( 5 +225 ) 10 5 12 % CL=90% ccc] ( 1:7 0:5 ) % 3 ccc] ( 2:8 1:1 ) 10 ( 6:5 1:8 ) 10 3 | ccc] (10:8 3:1 ) % ccc] < 4 % CL=90% ( 4 :9 3 :2 ) % ccc] ( 3:9 1:0 ) % | ccc] (10:1 2:8 ) % ccc] < 1:4 % CL=90%

;

;



;

;

Modes with one or three K's 8 ( 1 :0 < 2 :9 ccc] ( 6:5 ( 4 :0 ccc] < 5 <

;



;

;

;









;

;

;

;

;

; 

;

;





0 :4 ) %

10 3 CL=90% ;

10 2:8 ) 10 1:7 ) 10 10 

 







; ; ; ;

3 CL=90% 3 4 4 CL=90%

C = 1 weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

;

;

;



0







0

;







;

+ e+ e + +

K + e+ e K + +

K (892)+ +

+e

K+e

e+ e+

+ + e + + K e+ e+ K + + K e + + K (892) + +





0

K0 + K+ + K + 0 K (892)0 + K+K+K K+

;



<

;

C1 C1 C1 LF LF L L L L L L L

ww] ww]

< < < <

gg] gg]

< < < < < < < < < <

2 :7 2 :6 1 :6 3 :6 1 :4 6 :1 6 :3 6 :9 2 :9 7 :3 6 :3 1 :3 6 :8 1 :4

             

J P is natural, width and decay modes consistent with 1 . Mass m = 2112:1  0:7 MeV (S = 1.1) m D  ; m D = 143:8  0:4 MeV s s Full width ; < 1:9 MeV, CL = 90% ;

D s modes are charge conjugates of the modes below. ;

D s + DECAY MODES D +s D +s 0

Fraction (;i /;)

10 10 10 10 10 10 10 10 10 10 10 10 10 10

; ; ; ; ; ; ; ; ; ; ; ; ; ;

4 5 3 5 3 4 4 4 5 4 4 5 4 3

959 935 902 822 899 902 723 885 856 743 803 464 720 916 900 744 775 627 607

(94:2 2:5) % ( 5:8 2:5) % 



DsJ (2460)

I(J P ) = 0(1+)

Mass m = 2459:3  1:3 MeV (S = 1.3) m D  (2460) ; m D  = 347:2  1:2 MeV (S = 1.3) sJ s m D  (2460) ; m D = 491:0  1:2 MeV (S = 1.3) sJ s Full width ; < 5:5 MeV, CL = 90%

Ds 1 (2536)

I(J P ) = 0(1+) J, P need conrmation. Mass m = 2535:35  0:34  0:5 MeV Full width ; < 2:3 MeV, CL = 90%

Ds1 (2536) modes are charge conjugates of the modes below. ;

Ds1 (2536)+ DECAY MODES D (2010)+ K 0 D (2007)0 K + D+ K 0 D0 K + Ds +

Fraction (;i /;) seen seen not seen not seen possibly seen



979 968 922 909 765 976 919 979 968 976 922 909 919 765

139 48

I(J P ) = 0(0+) J, P need conrmation. J P is natural, low mass consistent with 0+ . Mass m = 2317:4  0:9 MeV (S = 1.1) m D  (2317) ; m D = 349:2  0:7 MeV sJ s Full width ; < 4:6 MeV, CL = 90%



CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

p (MeV/c)

D sJ (2317)

;

;

I(J P ) = 0(?? )

 

0:28) % 



D s

y

4



Hadronic modes without K's

+ + 0 + f0 (980) +  B(f0 ! + ) f2 (1270) + f0 (1370) +  B(f0 ! + ) (1450)0 +  B(0 ! + ) + + nonresonant + + 0  + ! + 3 +2 + + 0 0  +  + 0 3-body 3 +2 0  (958) + 3 +2 2 0  (958) +  (958) + 0 3-body

744 744 416 744 673 640 248 180



Ds 2 (2573)

p (MeV/c) 150 168 382 392 388

I(J P ) = 0(?? )

J P is natural, width and decay modes consistent with 2+ . Mass m = 2572:4  1:5 MeV Full width ; = 15 +54 MeV ;

Ds2 (2573) modes are charge conjugates of the modes below. ;

Ds2 (2573)+ DECAY MODES D0 K + D (2007)0 K + 

Fraction (;i /;) seen not seen

p (MeV/c) 435 244

52

Meson Summary Table CP violation ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + ! ACP (B + !

BOTTOM MESONS (B = 1)

B + = ub, B 0 = db, B 0 = d b, B = u b, similarly for B 's ;



B -particle organization Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B section, but because of their importance we have created two new sections: \B /B 0 Admixture" for (4S) results and \B /B 0 /B 0s /b-baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and b at high energy are found in the Admixture sections. B 0 -B 0 mixing data are found in the B 0 section, while B 0s B 0s mixing data and B-B mixing data for a B 0 /B 0s admixture are found in the B 0s section. CP-violation data are found in the B , B 0 , and B B 0 Admixture sections. b-baryons are found near the end of the Baryon section. 









The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews. B mass, mean life, branching fractions CP violation  B0 mass, mean life, branching fractions polarization in B 0 decay, B 0 -B 0 mixing, CP violation  B B 0 Admixtures branching fractions, CP violation  B /B 0 /B 0s /b-baryon Admixtures mean life, production fractions, branching fractions b at high energy,Vcb measurements B mass  B 0s mass, mean life, branching fractions polarization in B 0s decay, B 0s -B 0s mixing  Bc mass, mean life, branching fractions At end of Baryon Listings:  b mass, mean life, branching fractions  b-baryon Admixture mean life, branching fractions

B

I, J, P need conrmation. Quantum numbers shown are quark-model predictions. Mass m B = 5279:0  0:5 MeV Mean life  B = (1:671  0:018)  10 12 s c = 501 m ;

;

;

0







The branching fractions listed below assume 50% B 0 B 0 and 50% B + B production at the (4S). We have attempted to bring older measurements up to date by rescaling their assumed (4S) production ratio to 50:50 and their assumed D, Ds , D , and  branching ratios to current values whenever this would aect our averages and best limits signicantly. Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the nal state so the sum of the subchannel branching fractions can exceed that of the nal state. For inclusive branching fractions, e.g., B D anything, the values usually are multiplicities, not branching fractions. They can be greater than one. ;



!



I(J P ) = 21 (0;)

;

;





;

B modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B /B 0 ADMIXTURE section.





J =(1S)K + ) = ; 0:007  0:019 J =(1S) + ) = ; 0:01  0:13  (2S)K + ) = ; 0:037  0:025 D 0 K +) = 0:04  0:07 DCP(+1) K + ) = 0:06  0:19 DCP( 1) K + ) = ; 0:19  0:18 + 0 ) = 0:05  0:15 K + 0 ) = ; 0:10  0:08 K 0S + ) = 0:03  0:08 (S = 1.1) + + ) = ; 0:39  0:35 + 0 ) = ; 0:09  0:16 + ) = 0:01  0:08 K+ K + K K +) = 0:02  0:08 K +  ) = 0:009  0:035 ! + ) = ; 0:21  0:19 ! K + ) = ; 0:21  0:28  K + ) = 0:03  0:07  K (892)+ ) = 0:09  0:15 0 K (892)+ ) = 0:20  0:31

B + DECAY MODES `+ ` anything D 0 `+ ` D  (2007)0 `+ ` D 1 (2420)0 `+ ` D 2 (2460)0 `+ ` 0 e+  e  ` + ` ! ` + `  0 `+ ` p p e + e e + e

+   +  e + e

+ 



Scale factor/ p Condence level (MeV/c)

Fraction (;i /;)

Semileptonic and leptonic modes

rr] (10:2 0:9 ) % rr] ( 2:15 0:22) % rr] ( 6:5 0:5 ) % ( 5:6 1:6 ) 10 < 8 10 ( 9:0 2:8 ) 10 (8 4 ) 10 rr] < 2:1 10 rr] ( 1:34 +00::32 35 ) 10 < 5 :2 10 < 1 :5 10 < 2 :1 10 < 5 :7 10 < 2 :0 10 < 5 :2 10

{





 















;

;

 









D, D , or Ds modes

CL=90%

;

;

;



;

3 3 5 5 4 4 3 5 5 4 4 5

CL=90%

;

; ; ; ; ; ;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

2310 2258 2084 2067 2638 2611 2582 2583 2467 2640 2638 2340 2640 2638

 

D0 + D 0 + D0 K + D 0 K (892)+ D0 K + K 0 D 0 K + K (892)0 D0 + + D 0 + + nonresonant D 0 + 0 D 0 a1 (1260)+ D0 ! + D (2010) + + D + + D (2007)0 + D (2007)0 ! + D (2007)0 + D (2007)0 K + D (2007)0 K (892)+ 



;

;



;

;

    



( ( ( ( ( ( ( ( ( ( ( (

<

( ( ( ( (

4:98 1:34 3 :7 6 :1 5 :5 7 :5 1 :1 5 4 :2 5 4 :1 2 :1 1 :4 4 :6 4 :5 9 :8 3 :6 7 :2

           

0:29) 10 0:18) % 0:6 ) 10 2:3 ) 10 1:6 ) 10 1:7 ) 10 0 :4 ) % 4 ) 10 3:0 ) 10 4 ) 10 0:9 ) 10 0:6 ) 10 10 0:4 ) 10 1:2 ) 10 1:7 ) 10 1:0 ) 10 3:4 ) 10 









 









    





  

;

3

4 4 4 4

;

S=1.1

;

; ;

; ;

;

3 3 3 3 3 3 3 3 3 4 4

;

;

; ; ;

;

; ;

CL=90%

2308 2236 2280 2213 2189 2071 2289 2289 2207 2123 2206 2247 2299 2256 2149 2181 2227 2156

53

Meson Summary Table D (2007)0 K + K 0 D (2007)0 K + K (892)0 D (2007)0 + + D (2007)0 a1 (1260)+ + + 0 D (2007)0 D (2010)+ 0 D (2010)+ K 0 D (2010) + + 0 D (2010) + + + D 1 (2420)0 + D 1 (2420)0 + D 2 (2460)0 + D 2 (2460)0 + D 0 D +s D 0 D (2317)+ D 0 D (2457)+ D 0 D (2536)+ D (2007)0 D (2536)+ D 0 D (2573)+ D (2007)0 D (2573)+ D0 Ds + D (2007)0 D +s D (2007)0 D s + D (s )+ D 0 D (2007)0 D (2010)+ D 0 D (2010)+ + D (2007)0 D + D0 D+ D0 D+ K 0 D (2007)0 D + K 0 D 0 D (2010)+ K 0 D (2007)0 D (2010)+ K 0 D0 D0 K + D (2010)0 D 0 K + D 0 D (2007)0 K + D (2007)0 D (2007)0 K + D D+ K + D D (2010)+ K + D (2010) D + K + D (2010) D (2010)+ K + (D +D )(D +D )K D +s 0 Ds + 0 D +s  Ds +  D +s 0 D s + 0 D +s ! Ds + ! D +s a1 (1260)0 D s + a1 (1260)0 D +s  Ds +  D +s K 0 Ds + K 0 D +s K (892)0 D s + K (892)0 Ds + K + Ds + K + D s + K (892)+ D s + K (892)+  





;





;







;



;

;

   

sJ sJ sJ



sJ

sJ



sJ



















1:06 1 :5 0 :4 9 :4 2 :6 1 :9 0 :5 1 :8 0 :4 < 1 :7 < 9 :5 ( 1 :5 0 :7 < 1 ( 1 :5 0 :6 < 1 :4 < 1 :3 < 4 :7 ( 1 :3 0 :4 seen seen not seen not seen not seen not seen (9 4 ( 1 :2 0 :5 ( 2 :7 1 :0 ( 2 :7 1 :2 < 1 :1 < 1 :3

<

( ( ( (

















 



10 ) 10 ) 10 )% )% 10 10 )% % ) 10 10 10 10 )% 

;











  

3 3 3

CL=90%

; ;

; ;

; ; ; ;

4 5 3 3 3 3

CL=90% CL=90% CL=90% S=1.3 CL=90% CL=90% CL=90%

2132 2008 2236 2062 2219 2255 2225 2235 2217 2081 1995 2064 1977 1815 1605

{

) 10 3 )% )% )% % %

1447 1338 1417 1306 1734 1737 1651

;



CL=90% CL=90%

{

1713 1792





< < <

( ( (









<







;

;





;



;























;

; ;

;

< <

<





c K + J =(1S)K + J =(1S)K + + ; X(3872)K + J =(1S)K  (892)+ J =(1S)K(1270)+ J =(1S)K(1400)+ J =(1S)  K + J =(1S) + J =(1S) +

(

(





( (

< < < < < < < < < < < < < < < < < < < <

6 :7 2 :8 6 :1 5 :2 7 :8 1 :9 3 :8 4 :7 5 :3 4 7 1 :5 1 :8 3 :5 2 :0 3 :3 5 8 4 5 5 7 2 :2 1 :6 3 :2 4 1 :1 1 :1 5 4 8 1 :2 6 8

 

  

 

1 :2 ) 2 :6 ) 0 :4 ) 1 :0 ) 1 :6 )

       



0 :4 )

  



0 :6 ) %                    

Charmonium modes

( 9 :0 2 :7 ) ( 1:00 0:04) ( 7 : 7 2 :0 ) seen ( 1:35 0:10) ( 1 : 8 0 :5 ) < 5 ( 5 :2 1 :7 ) ( 4 :0 0 :5 ) < 7 :7

; ;

;

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

3 3 3 3 3 3 3 3 3 4 4 3 3

;

CL=90% CL=90% CL=90%

;

; ;

CL=90%

;

;

;

;

CL=90% CL=90%

;

;

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

4 4 4 4 4 4 4 4 3 3 4 4 3 3 4 4 4 3 3 3

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

1866 1571 1475 1476 1362 1577

{

1481 1368 1571 1475 1475 1363

{

2270 2215 2235 2178 2197 2138 2195 2136 2079 2014 2141 2079 2241 2184 2172 2112 2222 2164 2138 2076



;















  







 

10 4 10 3 10 4

1754 1683 1612

3 3 4 5 5 4

1571 1390 1308 1227 1727 1611

;

;

;

10 10 10 10 10 10

; ; ; ; ; ;

{

CL=90% S=1.2 CL=90%

<

( ( ( ( ( ( <

1 :2 10 3 1:2 +00::96 ) 10 5 6:8 0:4 ) 10 4 9:2 2:2 ) 10 4 1:9 1:2 ) 10 3 6:0 +22::41 ) 10 4 6:8 1:2 ) 10 4 2 :1 10 3 



;















;







;

;

;

;

;

;

;

K or K modes K0 + ( 1 88 0 21) 10 K+ 0 ( 1 29 0 12) 10  K+ ( 7 8 0 5 ) 10  K (892)+ 35 10 + K 69 10  K (892)+ ( 2 6 +10 09 ) 10 + !K ( 9 2 +22 85 ) 10 ! K (892)+ 87 10 K (892)0 + ( 1 9 +00 68 ) 10 K (892)+ 0 31 10 + K+ ( 5 7 0 4 ) 10 + + K nonresonant 28 10 K + 0 12 10 0 + K 2 (1430) 68 10 + + K 18 10 + + K nonresonant 56 10 0 + K1 (1400) 26 10 0 + 0 K 66 10 0 + K  48 10 + + K (892) 11 10 + 0 K (892)  ( 1 1 0 4 ) 10 + 0 K (892) K (892) 71 10 K1 (1400)+ 0 78 10 K 2 (1430)+ 0 15 10 20 10 K+K0 K0K+ 0 24 10 K + K 0S K 0S ( 1 34 0 24) 10 K 0S K 0S + 32 10 K+K + 63 10 K + K + nonresonant 75 10 K+K+ 13 10 K + K + nonresonant 8 79 10 K + K (892)0 53 10 K+K K+ ( 3 08 0 21) 10 K+ ( 9 3 1 0 ) 10 K + K K + nonresonant 38 10 + + K (892) K K 16 10 + K (892)  ( 9 6 3 0 ) 10 + K1 (1400)  11 10 34 10 K 2 (1430)+  K +  ( 2 6 +10 19 ) 10 K (892)+ ( 3 8 0 5 ) 10 K1 (1270)+ 99 10 + K ( 3 4 1 0 ) 10 + K+ ( 2 4 +00 65 ) 10 K (892)0 + ( 2 0 +00 76 ) 10 K + 0 20 10 + nonresonant K+ 92 10 + K1 (1400) 50 10 + K 2 (1430) 14 10 + K (1680) 19 10 + K 3 (1780) 55 10 + K 4 (2045) 99 10 Light un!avored meson modes 0

0



:



:



:



:



:



:



<

:



<

:





:

:



<



<

;



;

;



;



;

;

;







:



<

:



<

:



<

:



<

:



<

:



:



:



<

:



<

:



<

:



<

:





:



<

:



<

:



<

:



<

:



<

:



<

:



<

:



:



:



:



:



:





:



<

:



<

:



<

;

:



:

;

:



:



:

:

:

:

+ + 0 + + ; 0 + + f (980) 0 + f2 (1270) + ; + nonresonant



<

:





:





:

<

:





<

:

;











:



<

;

:

;

:

;

;





:

:

;

:

<

:



;



<





:

:

:

;

:

:

:



:

;







:

;

:

:

;

:







<

:



<

:



<

:



<

:



<

:



<

:



<

:



; ; ; ;

;

5 5 5 5 6 5



;









 





CL=90%

CL=90% CL=90%

;

6 5 5 5 5 5 5 4 6 5 3 5 5 3 5 5 4 3 6 5 5 6 6 5 6 5 6 5 6 5 3 6 3 3 6 5 5 6 5

;

;

CL=90%

;

; ; ; ; ; ; ; ; ; ; ;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

;

;

;

;

CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

;

;

;

;

;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

;

;

;

;

;

S=1.3 CL=90% CL=90% S=1.9 CL=90% CL=90%

;

;

;

CL=90%

;

;

5 5 6 5 3 3 3 3

;

; ; ; ; ; ; ;

2 :1 10 6 ( 5:6 +01::91 ) 10 6 ( 1:1 0:4 ) 10 5 ( 8:6 2:0 ) 10 6 < 1 :4 10 4 < 2 :4 10 4 < 4 :1 10 5

<

CL=90%

;

 







10 10 10 10 10 10 10 10 10 10 10 10 10

J =(1S)a1 (1260)+ J =(1S)p   (2S)K +  (2S)K (892)+  (2S)K + + c0 (1P)K + c1 (1P)K + c1 (1P)K (892)+

;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

;

;

;

;

CL=90% CL=90% CL=90%

1414 567 1284 1115 1178 1478 1411 1265 2614 2615 2528 2472 2588 2534 2557 2503 2562 2562 2609 2609 2558 2445 2609 2609 2451 2609 2558 2556 2504 2484 2387 2381 2593 2578 2521 2577 2578 2578 2578 2578 2540 2522 2516 2522 2466 2460 2339 2332 2306 2564 2486 2516 2609 2562 2558 2609 2453 2447 2360 2341 2243 2583 2636 2630 2581 2547 2483 2630

54

Meson Summary Table + 0 0 + 0 + + 0 + 0 a1 (1260)+ 0 a1 (1260)0 + ! + ! +  +  +  +  +  + + + + + 0 a1 (1260)+ 0 a2 (1320)+ + + + 0 a1 (1260)+ a1 (1260)0

8 :9 10 4 :3 10 < 4 :0 10 ( 2:6 0:6 ) 10 < 1 :7 10 < 9 :0 10 ( 6:4 +11::86 ) 10 < 6 :1 10 < 5 :7 10 < 7 :0 10 < 3 :3 10 < 1 :5 10 < 4 :1 10 < 1 :6 10 < 8 :6 10 < 6 :2 10 < 7 :2 10 < 6 :3 10 < 1 :3 %

;













;







0





 

;

;



<



0

;

<







;



; ; ; ; ; ;

4 5 3 5 3 4 6 5 6 6 5 5 7 5 4 4 4 3

;

; ;

;

;

; ;

; ; ; ; ;

CL=90% CL=90% CL=90% CL=90% CL=90% S=1.3 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

2631 2581 2621 2523 2494 2494 2580 2522 2609 2551 2492 2553 2539 2480 2608 2433 2410 2592 2335

Charged particle (h ) modes 





h+ 0 ! h+ h+ X 0 (Familon)

( 1:6 +00::76 ) 10 5 5 ( 1:38 +00::27 24 ) 10 < 4 :9 10 5 

;



;



;

2636

;

2580

;

CL=90%

{

Baryon modes 37 10 6 CL=90% 2439 pp + + 53 10 5 CL=90% 2439 p p nonresonant + + 4 52 10 CL=90% 2369 pp ( 4 3 +11 20 ) 10 6 2348 ppK+ 89 10 5 CL=90% 2348 p p K + nonresonant 15 10 6 CL=90% 2430 p 20 10 4 CL=90% 2367 p + 0 p 38 10 4 CL=90% 2402 15 10 4 CL=90% 2402 ++ p 15 10 5 CL=90% 1860 D+ p p 15 10 5 CL=90% 1786 D (2010)+ p p c p + ( 2 1 0 7 ) 10 4 1981 c p + 0 ( 1 8 0 6 ) 10 3 1936 c p + + ( 2 3 0 7 ) 10 3 1881 0 c p + + 1 34 % CL=90% 1823 0 5  c (2455) p 8 10 CL=90% 1939  c (2520)0 p 46 10 5 CL=90% 1905 0 0 4  c (2455) p ( 4 4 1 8 ) 10 1897 0 + 4  c (2455) p ( 4 4 1 7 ) 10 1845 + + 4  c (2455) p ( 2 8 1 2 ) 10 1845 + 4 c (2593) = c (2625) p 19 10 CL=90% { Lepton Family number (LF) or Lepton number (L) violating modes, or B = 1 weak neutral current (B1) modes + e+ e B1 39 10 3 CL=90% 2638 <

<

;

<

:

:

; ;



:



:



<

:



<

:



<

:



<

:

<



:



:



:



:



:



:



<



:

:

;

;;

;

<

;

+ +

K + e+ e

B1 B1

;

;

K + +

K + `+ ` K+  K (892)+ e + e K (892)+ +

K (892)+ `+ ` + e+

+ e + K + e+

K + e + K (892)+ e

e+ e+ ;

;



;



;



;

;

;

;



;

+ + e + + ; e + e + ; + + ; e + + K ; e+ e+ K ; + + ; ;





B1 B1 B1 B1 B1 B1 LF LF LF LF LF L L L L L LF L L

<

;

;

;

;

;

;

;

;

;

;

;

; ;

;

:

<

;



:

;

;

:

<

;

;



:

;

<

<





:

:

;







:



:



:



:



:



:



:



; ;

;

;

;

;

;

9 :1 10 3 ( 6:3 +11::97 ) 10 7 ( 4:5 +11::42 ) 10 7 rr] ( 5:3 1:1 ) 10 7 < 2 :4 10 4 < 4 :6 10 6 < 2 :2 10 6 rr] < 2:2 10 6 < 6 :4 10 3 < 6 :4 10 3 < 8 10 7 < 6 :4 10 3 < 7 :9 10 6 < 1 :6 10 6 < 1 :4 10 6 < 1 :3 10 6 < 2 :6 10 6 < 5 :0 10 6 < 3 :3 10 6 < 1 :0 10 6 < 1 :8 10 6 <



;

;















  















 





e + + (892) e + e + (892) + + (892) e + +

L L L LF

;   

;

;

;

2 :0 2 :8 8 :3 4 :4

< < < <

   

10 10 10 10

; ; ; ;

6 6 6 6

CL=90% CL=90% CL=90% CL=90%

;

CL=90%

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

; ;

;

;

;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

2633 2616

2612 2616 2616 2564 2560 2564 2637 2637 2615 2615 2563 2638 2633 2637 2583 2578 2581 2616 2612

2615 2564 2560 2563

I(J P ) = 21 (0;)

B0

I, J, P need conrmation. Quantum numbers shown are quark-model predictions. Mass m B 0 = 5279:4  0:5 MeV m B 0 ; m B = 0:33  0:28 MeV (S = 1.1) Mean life  B 0 = (1:536  0:014)  10 12 s c = 460 m  B + / B 0 = 1:086  0:017 (direct measurements) B 0 -B 0 mixing parameters d = 0:186  0:004 m B 0 = m B 0 ; m B 0 = (0:502  0:007)  1012 h s 1 H L = (3:304  0:046)  10 10 MeV xd = m B 0 /;B 0 = 0:771  0:012 CP violation parameters Re(B 0 )/(1+ B 0 2 ) = (0:5  3:1)  10 3 AT CP = 0:005  0:018 ACP (B 0 ! K + ) = ; 0:09  0:04 ACP (B 0 ! + ) = ; 0:18  0:09 ACP (B 0 ! + K ) = 0:28  0:19 ACP (B 0 ! K (892)+ ) = 0:26  0:35 ACP (B 0 ! K (892)0 ) = 0:05  0:10 ACP (B 0 ! D (2010)+ D ) = ; 0:03  0:12 C (B 0 ! + ) = ; 0:51  0:23 (S = 1.2) S (B 0 ! + ) = ; 0:5  0:6 (S = 2.3) C (B 0 ! + ) = 0:36  0:18 S (B 0 ! + ) = 0:19  0:24 C 0 (958) K (B 0 !  (958)K 0S ) = 0:04  0:13 S 0 (958) K (B 0 !  (958)K 0S ) = 0:27  0:21 C K 0 (B 0 !  K 0S ) = 0:15  0:30 S S K 0 (B 0 !  K 0S ) = ; 1:0  0:5 S CK + K ; K 0 (B 0 ! K + K K 0S ) = 0:17  0:16 S SK + K ; K 0 (B 0 ! K + K K 0S ) = ; 0:51  0:26 S CD  (2010); D + (B 0 ! D (2010) D + ) = ; 0:2  0:4 SD  (2010); D + (B 0 ! D (2010) D + ) = ; 0:2  0:7 CD  (2010)+ D ; (B 0 ! D (2010)+ D ) = ; 0:5  0:4 SD  (2010)+ D ; (B 0 ! D (2010)+ D ) = ; 0:8  0:8 CJ (1S) 0 (B 0 ! J =(1S) 0 ) = 0:4  0:4 SJ (1S) 0 (B 0 ! J =(1S) 0 ) = 0:1  0:5 C (B 0 ! + ) = 0:28  0:19 S (B 0 ! + ) = 0:15  0:25  (B 0 ! c c K 0 ) = 0:949  0:045  (B 0 ! D + D ) = 0:75  0:19 Im() (B 0 ! D + D ) = 0:05  0:31 sin(2 ) = 0:731  0:056 ;

;

;

 

h = K or 

K K K K

;

=

;

;

;



;





;

;



;



;



;



0



0







;

;

=



=





;



;



;



;

;



;





;



;

B 0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B /B 0 ADMIXTURE section. The branching fractions listed below assume 50% B 0 B 0 and 50% B + B production at the (4S). We have attempted to bring older measurements up to date by rescaling their assumed (4S) production ratio to 50:50 and their assumed D, Ds , D , and  branching ratios to current values whenever this would aect our averages and best limits signicantly. Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the nal state so the sum of the subchannel branching fractions can exceed that of the nal state. For inclusive branching fractions, e.g., B D anything, the values usually are multiplicities, not branching fractions. They can be greater than one. 

;



!



55

Meson Summary Table D0  D0 ! D 0 K (892)0 D 0 D (2007)0 0 D (2007)0 0 D (2007)0  D (2007)0  D (2007)0 + D (2007)0 K 0 D (2007)0 K (892)0 D (2007)0 K (892)0 D (2007)0 + + D (2010)+ D (2010) D (2007)0 ! D (2010)+ D D (2010) D + + D (2010)+ D D (2007)0 D (2007)0 D D0 K + D D (2007)0 K + D (2010) D 0 K + D (2010) D (2007)0 K + D D+ K 0 D (2010) D + K 0 + D D (2010)+ K 0 D (2010) D (2010)+ K 0 D0 D0 K 0 D 0 D (2007)0 K 0 + D (2007)0 D 0 K 0 D (2007)0 D (2007)0 K 0 (D +D )(D +D )K 0

B 0 DECAY MODES

Fraction (;i /;)

`+ ` anything D ; `+ `

D (2010) `+  

 ; `+  ` ; + ` `

;

Scale factor/ p Condence level (MeV/c)

rr] rr] rr] rr] rr]

`

(10:5 ( 2:14 ( 5:44 ( 2 :6 ( 1:33

    

{

0 :8 ) % 0:20) % 0:23) % 0:7 ) 10 4 0:22) 10 4

2309 2257 2583 2638

;



;



Inclusive modes

K + anything

(78



{

8 )%

D, D , or Ds modes

;

( ( ( ( (

;

;



;

;

;

<



;

;



;

;

;

;

;

;

;



;



;



;



;



;



;



;







;

;



;





;

;

;



;



;



;



;



;



;

; ; 

;

;





;

; ;

;



sJ

sJ

sJ



;

;

sJ

sJ



;

sJ

;



;

;



;

;



;

;

; ;

;



;



;

; ;



;





;

<

( ( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( (

2:76 7 :7 3 :7 2 :8 2 :0 3 :1 8 :8 2 :7 8 :0 2:76 8 :0 3 :9 1 :1 6 :0 1 :5 6 :8 2 :0 3 :8 4 :7 1:29 7 :6 0 :0

    

0:25) 1 :3 ) 1 :8 ) 0 :6 ) 0 :6 )

     

           

 

10 10 10 10 10 10 10 10 10 10 10 10 10 10



















;

CL=90%

;

;

;

;

;

3 4 4 4 3 3 3

;

;

;

; ; ; ;

5:7 3:2 ) 10 1:30 0:27) % 1:76 0:27) % 1 :8 0 :7 ) % 6:5 1:6 ) 10 1:5 0:4 ) 10 2:9 0:5 ) 10 < 2 :2 10 < 4 :9 10 < 9 :4 10 ( 8:0 3:0 ) 10 ( 1:07 0:29) % ( 1 :0 0 :5 ) % ( 1 : 9 0 :5 ) % seen seen not seen not seen not seen not seen ( 2:7 1:0 ) 10 < 4 :1 10 < 7 10 < 8 10 < 2 :6 10 < 2 :2 10 ( 3:8 1:3 ) 10 < 2 :5 10 < 9 :9 10 < 1 :1 10 < 5 10 < 3 :1 10 < 4 10 < 2 :0 10 ( 5:0 1:4 ) 10 ( 4:8 1:2 ) 10 ( 2:91 0:28) 10 ( 2:9 1:1 ) 10 ( 2:2 0:5 ) 10 

;

;





;

;





;

;





3 3 4 3 4 4 4 4 4 3 3 3 3 3

;

;

1 :9 ) 0 :8 ) 1 :6 ) 0:21) 2 :5 ) 1 :9 ) 1 :0 ) 3 :3 ) 0 :5 ) % 0:9 ) 10 0:5 ) 10 1:5 ) 10 10 0:33) 10 1:8 ) 10 2:5 ) 10 



;

CL=90% S=1.4

3



















 







;

;

4 3 3 3 3 4 3

; ; ;

;

CL=90% CL=90% CL=90%

;

























 













   

0



;

 









 

D + D + D K (892)+ D ! + D K+ D K+ K0 D K + K (892)0 D0 0 D0 + D (2010) + D + + (D + + ) nonresonant D + 0 D a1 (1260)+ D (2010) + 0 D (2010) + D (2010) K + D (2010) K (892)+ D (2010) K + K 0 D (2010) K + K (892)0 D (2010) + + (D (2010) + + ) nonresonant D (2010) + 0 D (2010) a1 (1260)+ 0 D (2010) + + 0 D (2010)+ + + D (2010) p p D (2010) p n D (2010) ! + D 2 (2460) + D 2 (2460) + D D+ D D +s D (2010) D +s D Ds + D (2010) D s + D D (2317)+ D D (2457)+ D D (2536)+ D (2010) D (2536)+ D D (2573)+ D (2010) D (2573)+ D +s Ds + D +s  Ds +  D +s a1 (1260) D s + a1 (1260) Ds K + Ds K + D s K (892)+ D s K (892)+ Ds + K 0 Ds + K 0 D s + K (892)0 D s + K (892)0 D0 K 0 D 0 K (892)0 D0 0 D 0 0 D0 























2306 2235 2211 2204 2279 2188 2070 2308 2301 2255 2287 2287 2206 2121 2247 2180 2226 2155 2131 2007 2235 2235 2150 2061 2218 2218 1707 1785 2148 2064 1977 1864 1812 1735 1732 1649 1602

{

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

5 5 4 4 3 3 5 5 4 3 3 3 3 3 5 5 4 4 4

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

S=1.6

1444 1336 1414 1303 2270 2215 2197 2138 2080 2015 2242 2185 2172 2112 2222 2164 2138 2076 2280 2213 2308 2237 2274

;





;

;





;



;



 

0:4 ) 10 0:6 ) 10 10 10 0:5 ) 10 10 0:6 ) 10 10 2:2 ) 10 10 10 10 0:9 ) 10 1:8 ) 10 1:1 ) 10 10 1:5 ) 10  





















 



  













; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

4 4 5 5 4 4 4 4 4 5 5 5 3 4 4 4 4

S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

CL=90%

2198 2235 2213 2258 2256 2181 2220 2141 2248 2227 2157 2157 2219 1711 2180 1790 1790

;





;

;

( 1 :7 ( 2 :5 < 1 :8 < 5 :0 ( 2 :7 < 5 :1 ( 2 :6 < 2 :6 ( 6 :2 < 6 :6 < 6 :9 < 4 :0 ( 3 :0 ( 8 :7 ( 4 :2 < 6 :3 ( 9 :3





;



;



; 

;

;





;





2 :7 % 1:7 0:4 ) 10 4:6 1:0 ) 10 3:1 +00::65 ) 10 1:18 0:20) % < 1 :7 10 ( 6:5 1:6 ) 10

<

( ( ( (









; ;



;

3 3 3

;







( 8 :8 1 :4 < 3 :7



<



CL=90%

3 3

; ;

CL=90%

1715 1574 1478 1479 1366 1568 1473

1:9 ) 10 3 10 3 10 3

CL=90% CL=90%

1360 1575 1478

10 3

CL=90%

1365







;

;

;









c K 0 c K  (892)0 J =(1S)K 0 J =(1S)K + ; J =(1S)K  (892)0 J =(1S)  K 0 J =(1S)K(1270)0 J =(1S) 0 J =(1S)  J =(1S) + ; J =(1S) 0 J =(1S) ! J =(1S)  J =(1S) 0 (958) J =(1S)K 0 + ; J =(1S)K 0 0 J =(1S)K  (892)+ ; J =(1S)K  (892)0 + J =(1S)p p  (2S)K 0  (2S)K + ;  (2S)K  (892)0 c0 (1P)K 0 c1 (1P)K 0 c1 (1P)K  (892)0

K+ K0 0  K0  K (892)0  K (892)0 K0 !K0 K 0S X 0 (Familon) ! K (892)0 K0K0 K 0S K 0S K 0S 0 K+ K+ K0 + ;

0

0







;

;

;

6 :6 ( 4 :3

<







0 :7 ) %

Charmonium modes ( ( ( ( ( ( ( (

<

( (

< < <

;

<

<

( ( ( (

( (

<

( (

1 :2 0 :4 ) 1 :6 0 :7 ) 8 :5 0 :5 ) 1 :2 0 :6 ) 1:31 0:07) 9 :4 2 :6 ) 1 :3 0 :5 ) 2 :2 0 :4 ) 2 :7 4 :6 0 :9 ) 1 :6 0 :7 ) 2 :7 9 :2 6 :3 1 :0 0 :4 ) 5 :4 3 :0 ) 8 4 ) 6 :6 2 :2 ) 1 :9 6 :2 0 :7 ) 1 8 :0 1 :3 ) 5 :0 4:0 +11::20 ) 4 :1 1 :5 ) 



































     





















;



      

K or K modes

;

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

3 3 4 3 3 5 3 5 5 5 5 4 6 5 3 4 4 4 6 4 3 4 4 4 4

;

;

;

;

;

;

;

;

;

;

;

;

;



;



;

;





             

CL=90% CL=90% CL=90%

;

;

;

;

; ; ; ; ;

CL=90% CL=90% CL=90%

;

;

 

( 1:85 0:11) ( 9:5 +21::19 ) ( 6 :3 0 :7 ) < 2 :4 ( 1:4 +00::65 ) < 9 :3 < 1 :3 < 5 :3 < 2 :3 < 3 :3 ( 4:2 +11::85 ) < 4 :0 ( 7 :3 1 :8 ) ( 4 :7 0 :7 )

CL=90%

;

10 10 10 10 10 10 10 10 10 10 10 10 10 10

;

5 6 5 5 5 6 5 5 5 6 6 5 6 5

S=1.2

;

; ;

S=1.1 CL=90%

;

; ; ; ;

;

CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

;

;

CL=90%

{

1753 1648 1683 1652 1571 1224 1390 1728 1672 1716 1611 1609 1519 1546 1611 1390 1514 1447 862 1283 1238 1116 1477 1411 1265 2615 2614 2528 2472 2534 2587 2557

{

2503 2592 2521 2609 2559 2609

56

Meson Summary Table K 0 0 39 10 K 0 f0 (980) 36 10 K (892)+ ( 1 6 +00 65 ) 10 K (892)0 0 36 10 K 2 (1430)+ 18 10 K0K + 21 10 K+K 0 19 10 K0K+K ( 2 8 0 5 ) 10 K0 ( 8 6 +11 31 ) 10 K + + eee] 23 10 K (892)0 + 14 10 K (892)0 0 34 10 K (892)0 f0 (980) 17 10 + K1 (1400) 11 10 + K a1 (1260) eee] 23 10 0 + K (892) K K 61 10 0 K (892)  ( 1 07 0 11) 10 0 0 K (892) K (892) 22 10 K (892)0 K (892)0 37 10 + K (892) K (892) 1 41 10 0 0 K1 (1400)  30 10 0 K1 (1400)  50 10 0 0 K 2 (1430)  11 10 K 2 (1430)0  14 10 0 K (892) ( 4 3 0 4 ) 10 0 K  83 10 K+ ( 4 6 1 4 ) 10 K (1410) 13 10 K + nonresonant 26 10 K1 (1270)0 70 10 K1 (1400)0 43 10 K 2 (1430)0 ( 1 3 0 5 ) 10 K (1680)0 20 10 K 3 (1780)0 10 % K 4 (2045)0 43 10 Light un!avored meson modes 

<

:



<

:



;

:

 

;

;

;

:



:



<

:



<

:

:

;

;





;

;



;









;







<

:



<

:



<

:



<

:



<

:



<

:



<

:



<

:



<

:



<

:



<

:



:



:







:



<

:



<

:



<

:



:

<

:

<

:

<

:



:



























 



 























+ 0 0 +  a1 (1260)0 0 ! 0 + + 0 a1 (1260)+  a1 (1260)0 0 + + + a1 (1260)+ a1 (1260) + + + 0 ;

;

;

;

;

;

;

;

;

;

;

;











  





CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

;

; ; ;

;

;

;

;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

;

;

;

;

; ;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

;

;

CL=90%

;

;

; ; ;

1 :2 10 1 :0 10 < 3 :3 10 ( 4:8 0:5 ) 10 ( 1:9 0:5 ) 10 < 2 :9 10 < 1 :8 10 < 5 :7 10 < 4 :7 10 < 2 :7 10 < 1 :2 10 < 1 :0 10 < 1 :2 10 < 6 :0 10 < 1 :1 10 < 1 :9 10 < 5 10 < 9 10 < 3 :1 10 < 1 :3 10 < 2 :1 10 < 1 :2 10 < 7 :2 10 < 5 :3 10 gg] ( 2:28 0:25) 10 < 2 :3 10 < 2 :1 10 gg] < 4:9 10 gg] < 3:0 10 < 3 :1 10 < 2 :2 10 < 1 :1 10 < 3 10 < 9 :0 10 < 3 :4 10 < 2 :4 10 < 3 :0 10 < 2 :8 10 < 1 :1 % <

<





;







;





;

;





a1 (1260) a2 (1320)

;



:

<



0 !  + ; 0 0  0  0 0 0 0 0   0 0  0 ! ! 0 ! 0 !!  0   0 0 !  + ; 0 0 0   + ; + 0 0



:

:



:

<

:







5 4 5 6 5 5 5 5 6 4 3 5 4 3 4 4 5 5 5 4 3 3 3 3 5 6 6 4 6 3 3 5 3

;

;





<



:

:

;

;

:

;



:





:

<

:







<





:

<

:



;

;



<

;

;

:

;

CL=90% CL=90% CL=90% CL=90%

;

;

;

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

3 6 6 6 6 6 6 5 6 5 5 5 5 5 5 5 5 6 6 5 5 5 5 4 6 5 4 6 4 4 3 3 3 6 3 3 3 3 3

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

2558 2524 2562 2563 2445 2578 2579 2522 2516 2600 2557 2504 2468 2451 2471 2466 2460 2485 2485 2485 2388 2339 2381 2333 2564 2516 2615 2450 2615 2486 2453 2447 2360 2341 2244 2583 2582 2541 2636 2636 2610 2582 2551 2460 2522 2492 2553 2552 2491 2522 2521 2539 2511 2447 2480 2479 2435 2631 2581 2581 2621 2523 2494 2473 2622 2523 2494 2580 2609 2433 2433 2592 2336 2572

Baryon modes pp 12 10 6 CL=90% 25 10 4 CL=90% pp + 72 10 6 CL=90% ppK0 ( 4 0 +11 10 ) 10 6 p 82 10 7 CL=90% p K 38 10 6 CL=90% p0  10 10 6 CL=90% 15 10 3 CL=90% 0 0 ++ 11 10 4 CL=90%   D0 p p ( 1 18 0 22) 10 4 0 D (2007) p p ( 1 2 0 4 ) 10 4  c ++ 10 10 3 CL=90% c p + ( 1 3 0 4 ) 10 3 c p ( 2 2 0 8 ) 10 5 c p 0 59 10 4 CL=90% 0 c p + 5 07 10 3 CL=90% + c p + 2 74 10 3 CL=90%  c (2520) p + ( 1 6 0 7 ) 10 4  c (2520)0 p 1 21 10 4 CL=90%  c (2455)0 p (10 8 ) 10 5 S=1.7  c (2455) p + ( 2 8 0 9 ) 10 4 4 c (2593) / c (2625) p 11 10 CL=90% Lepton Family number (LF) violating modes, or B = 1 weak neutral current (B1) modes ;

<

:



<

:



<

:

;

:

;

;

;;



<

:



<

:



<

:



:

:

:

;;

;

<

; ; ;

;

;

;

;

:

:



:



:



:





:



<

:





:

;

;

<

B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 LF LF LF LF LF

e+ e;

+ ; K 0 e+ e; K 0 + ; K 0 `+ `; K  (892)0 e + e ; K  (892)0 + ; K  (892)0   K  (892)0 `+ `; e   K 0 e   K  (892)0 e   e  

  

;

;

;

;

;

;

;





:

;



:

;;

;

;

;



:

<

;

;



<

;

;





:

;

:

<

;;

;

;





:

;

;



:

:

<

;



:

;

<



;



;



:

;



:

;



1 :7 1 :9 < 1 :6 < 5 :4 ( 5:6 +22::94 ) rr] < 6:8 < 2 :4 ( 1 :3 0 :4 ) < 1 :0 rr] ( 1:17 0:30) gg] < 1:7 < 4 :0 < 3 :4 gg] < 5:3 gg] < 8:3 <



<



;





            

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

; ; ; ;

6 7 7 7 7 7 6 6 3 6 7 6 6 4 4

CL=90% CL=90% CL=90% CL=90%

;

; ; ;

;

CL=90% CL=90% CL=90%

;

;

;

;

; ;

CL=90% CL=90% CL=90% CL=90% CL=90%

2467 2406 2347 2401 2308 2383 2392 2335 2335 1862 1788 1840 1934 2021 1982 1883 1821 1861 1861 1896 1896

{

2640 2640 2638 2616 2612 2616 2564 2560 2564 2564 2639 2615 2563 2341 2339

B /B 0 ADMIXTURE CP violation ACP (B ! K (892) ) = ; 0:01  0:07 ACP (B ! s ) = ; 0:08  0:11 

The branching fraction measurements are for an admixture of B mesons at the (4S). The values quoted assume that B((4S) B B) = 100%. !

For inclusive branching fractions, e.g., B D anything, the values usually are multiplicities, not branching fractions. They can be greater than one. B modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Scale factor/ p B DECAY MODES Fraction (;i /;) Condence level (MeV/c) 

!

Semileptonic and leptonic modes B ! e + e anything f ] ( 10 73 0 28 ) % + 59 10 4 CL=90% B ! p e e anything + B ! `  anything rr,f ] ( 10 73 0 28 ) % B ! D `+  anything rr] ( 2 8 09 )% rr] ( 7 2 15 )% B ! D 0 `+  anything rr,ggg] ( 2 7 07 )% B ! D `+  ( 74 1 6 ) 10 3 B! D 1 (2420) `+  anything ( 26 05 )% S=1.5 B ! D `+  anything + + D `  anything B ! D `+  anything ( 15 06 )% B ! D `+  anything ( 19 04 )% 65 10 3 CL=95% B! D 2 (2460) `+  anything :

<

`

;

`

`



`



:

:



:



:



:

:



:

:



:

:



:

:



:

;

:



;

{ { { { { { {

`

`



`

`



`

<



`

:



:

:



:

:



;

{ { { {

57

Meson Summary Table B ! D + `+  any( 1 00 0 34 ) % thing B ! D s `+  anything rr] 9 10 B ! D s `+  K + any- rr] 6 10 thing B ! D s `+  K 0 any- rr] 9 10 thing + + B ! K `  anything rr] ( 6 2 06 )% B ! K `+  anything rr] ( 10 4 ) 10 0 + 0 rr] ( 4 5 05 )% B ! K /K `  anything D, D , or Ds modes B ! D anything ( 23 5 19 )% 0 0 ( 64 0 30 )% B ! D /D anything B ! D (2010) anything ( 22 5 15 )% 0 B ! D (2007) anything ( 26 0 27 )% B ! D s anything gg] ( 10 5 26 )% B ! D s anything ( 79 22 )% ( 42 12 )% B ! Ds D ( ) seen B ! D D (2317) seen B ! D D (2457) gg,hhh] ( 7 1 + 21 77 ) % B ! D ( )D ( ) K0 + D( )D( )K ( 22 4 )% b ! ccs gg,hhh] ( 4 9 12 )% B ! Ds ( ) D ( ) B ! D D (2010) gg] 59 10 gg] 55 10 B ! D D (2010) + D D B ! DD gg] 31 10 B ! Ds ( ) D ( ) X (n )gg,hhh] ( 9 + 54 ) % B ! D (2010) 11 10 gg] 5 10 B ! D +s , D s + , + + + 0 Ds  , Ds  , Ds , D s + 0 , D +s  , D s +  , D +s 0 , D s + 0 , D +s ! , Ds + ! B ! Ds1 (2536)+ anything 95 10 Charmonium modes B ! J =(1S)anything ( 1 094 0 032) % B ! J =(1S)(direct) ( 78 0 4 ) 10 anything B ! (2S)anything ( 3 07 0 21 ) 10 B ! c1 (1P)anything ( 3 86 0 27 ) 10 B ! c1 (1P)(direct) any( 3 34 0 28 ) 10 thing B ! c2 (1P)anything ( 13 0 4 ) 10 B ! c2 (1P)(direct) any( 1 65 0 31 ) 10 thing B ! c (1S)anything 9 10 K or K modes B ! K anything gg] ( 78 9 25 )% B ! K + anything ( 66 5 )% B ! K anything ( 13 4 )% gg] ( 64 4 )% B ! K 0 /K 0 anything B ! K (892) anything ( 18 6 )% gg] ( 14 6 26 )% B! K (892)0 /K (892)0 anything B ! K (892) ( 42 0 6 ) 10 B ! K1 (1400) 1 27 10 B ! K 2 (1430) ( 1 7 + 00 65 ) 10 B ! K2 (1770) 12 10 B ! K 3 (1780) 30 10 B ! K 4 (2045) 10 10 B ! K  (958) ( 83 1 1 ) 10 B ! K (892)  (958) 22 10 B ! K 52 10 B ! K (892)  ( 18 0 5 ) 10 B ! K  ( 23 0 9 ) 10 ( 33 0 4 ) 10 B ! b ! s 68 % B ! b ! s gluon B !  anything 44 10 B !  anything ( 46 1 3 ) 10 ;

:

`

;



`

<



`

<



;

;

:

`



:

`



3 3

CL=90% CL=90%

{ {

;

3

CL=90%

{

;

3

; ;

:



`

{

:

<

`

;





{ { {

:

 

















:



:

:



:

:



:

:



:

:



:

:



:

:



:

S=1.1

1605

sJ

{ {

sJ









:



:

;

:









:













:

<

:



<

:



; ;





<



 

:



;

;

<



;



;

3 3 3

CL=90% CL=90% CL=90%





;

:



<



{ { { { { { {

3 4

; ;

CL=90% CL=90%

{ {

1711

{

1866

{

2257

{

;









<

:



:



:

:



:



:



:



:



:



:



:



:



:



:



:



<



;

;

; ; ;

; ;

;

3 3

CL=90% S=1.1 S=1.1

3 3 3 3 3 3

:



S=1.9 CL=90%











:



:

:



:







<



:

:







:



:



<

:





:



<

:



<

:





<

<

0

:

<

:

0



:

;

<

0





:



:



:



:



:



:



:





:



{

Light un!avored meson modes

!  ! anything ! 0 anything !  anything ! 0 anything ! ! anything !  anything B !  K (892)

< 1: 9 gg,iii] (358 (235 ( 17:6 ( 21 < 81 ( 3:5 < 2:2





! +c / c anything ! c e + anything ! c p anything ! c p e + e !  c anything !  c anything !  0c anything !  0c N (N = p or n) !  0c anything  B( 0c !  + ) B !  +c anything  B( +c !  + + ) B ! p /p anything B ! p /p (direct) anything B ! /anything B !  / + anything B ! baryons anything B ! p p anything B ! p /p anything B ! anything

B B B B B B B B B

;

   

)% )% )% )% % 0 :7 ) %





Baryon modes ( 6:4 3: 2 ( 3: 6 < 1: 5 ( 4: 2 < 9: 6 ( 4: 6 < 1: 5 ( 1: 4

;



7 11 1 :6 5

1 :1 ) %



<

; ;

;; ;



0 :7 ) %



10 6

CL=90%

2583

10 5

CL=90% S=1.8 CL=90%

2460

10 3

CL=90%

3 3 3 3 3 4

CL=90%

;

;

;

10 2:4 ) 10 10 2:4 ) 10 10 0:5 ) 10 

















; ; ; ; ; ;

{ { { { { {

{ { {

2021

{ { {

CL=90% CL=90%

1939

{

;

( 4:5 + 11::32 ) 10 4

;

B B B B B B B B B B B B B B

! ! ! ! ! ! ! ! ! ! ! ! ! !

gg] gg] gg] gg]

( ( ( ( ( ( gg] ( <

8:0 5:5 4: 0 2: 7 6: 8 2:47 2: 5 5

0 :4 0 :5 0 :5 0 :6 0 :6 0:23 0 :4

      

)% )% )% ) 10 3 )% )% )% 10 3 



B1 B1

;

;

B1

;

;



;

;



;

;



;























B1 B1 B1 B1 B1 B1 LF LF LF LF LF

( 5:0 2 :6 ( 7:9 + 32::06 rr] ( 6:1 + 21::08 ( 4:8 + 11::53 ( 1: 5 0 :5 ( 4: 8 1 :2 ( 1:17 + 00::37 33 ( 5:4 0 :8 ( 1:05 0:20 gg] < 2:2 < 1:6 < 3:2 < 1:6 < 6:2 

;

;

;





; 



{ { { { { { { {

;

;

Lepton Family number (LF) violating modes or B = 1 weak neutral current (B1) modes

s e+ e s +

s `+ ` K e+ e K (892)e + e K +

K (892) +

K `+ ` K (892) `+ ` e s e

e

Ke

K (892)e

{

;



;

;

CL=90%

) 10 6 ) 10 6 ) 10 6

{ { {

7 6 7 6 7 6 5 6 6 6 6

2617 2564 2612 2560 2617 2564



;

;



;



) ) ) ) ) )

          

10 10 10 10 10 10 10 10 10 10 10

;

; ;

;

; ; ; ; ; ; ;

CL=90% CL=90% CL=90% CL=90% CL=90%

{

2637 2582 2616 2563

B /B 0/B 0s /b-baryon ADMIXTURE These measurements are for an admixture of bottom particles at high energy (LEP, Tevatron, Sp pS). Mean life  = (1:564  0:014)  10 12 s Mean life  = (1:72  0:10)  10 12 s Charged b-hadron admixture Mean life  = (1:58  0:14)  10 12 s Neutral b-hadron admixture  charged b hadron / neutral b hadron = 1:09  0:13  b / b b = ; 0:001  0:014 ;

;

;

; ;

5 4 5 3 3 3 5 5 6 5 6 4

CL=90%

;

; ; ; ; ; ; ; ;

CL=90% CL=90% CL=90% CL=90% CL=90%

;

:

:

{ {

{ { { { { {

:



;

{ { { { {

 



{

B B B B B B B

; ;

4 4

CL=90% CL=90%

2564 2453 2447 2342 2341 2244 2528 2472 2588 2534 2306

{ { { {

;

;



The branching fraction measurements are for an admixture of B mesons and baryons at energies above the (4S). Only the highest energy results (LEP, Tevatron, Sp pS) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LEP and at the Tevatron. For inclusive branching fractions, e.g., B D anything, the values usually are multiplicities, not branching fractions. They can be greater than one. The modes below are listed for a b initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing. Scale factor/ p b DECAY MODES Fraction (;i /;) Condence level (MeV/c) !



58

Meson Summary Table PRODUCTION FRACTIONS



The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFAG) as described in the note \B 0 -B 0 Mixing" in the B 0 Particle Listings. Values assume B + ) = B(b B0) B(b B + ) + B(b B 0 ) +B(b B 0s ) + B(b b -baryon) = 100 %. B(b The notation for production fractions varies in the literature (fd , dB 0 , f (b B 0 ), Br(b B 0 )). We use our own branching fraction notation B 0 ). here, B(b !

!

!

!

!

( ( ( (

39:7 39:7 10:7 9 :9

   

|

1:0 1 :0 1 :1 1:7

DECAY MODES Semileptonic and leptonic modes

 anything ( 23:1  1:5 ) % `+ ` anything rr] ( 10:68  0:22) % + e e anything ( 10:86  0:35) % 0:29 ) %

+  anything ( 10:95 + ; 0:25 D ; `+ ` anything rr] ( 2:3  0:4 ) % D ; + `+ ` anything ( 4:9  1:9 )  10;3 D ; ; `+ ` anything ( 2:6  1:6 )  10;3 D 0 `+ ` anything rr] ( 6:90  0:35) % D 0 ; `+ ` anything ( 1:07  0:27) % D 0 + `+ ` anything ( 2:3  1:6 )  10;3 D ; `+ ` anything rr] ( 2:75  0:19) % D ; + `+ ` anything ( 4:8  1:0 )  10;3 D ; ; `+ ` anything ( 6  7 )  10;4 ; + D j ` ` anything rr,jjj] seen D 2 (2460); `+ ` anything seen rr] ( 1:7  0:5 )  10;3 charmless ` `  +  anything ( 2:48  0:26) % D ;   anything ( 9  4 )  10;3 c ! `;  ` anything rr] ( 8:0  0:4 ) % 0 :4 ) % c ! `+  anything ( 1 :6 + ; 0 :5

S=1.7

Charmed meson and baryon modes

D 0 anything ( 61 0 3 2 ) % D 0 D s anything gg] ( 9 1 + 32 98 ) % D D s anything gg] ( 4 0 + 21 38 ) % 0 0 D D anything gg] ( 5 1 + 21 08 ) % D 0 D anything gg] ( 2 7 + 11 86 ) % D D anything gg] 9 10 D anything ( 23 1 2 2 ) % + D (2010) anything ( 17 3 2 0 ) % D1 (2420)0 anything ( 50 15 )% D (2010) D s anything gg] ( 3 3 + 11 63 ) % D 0 D (2010) anything gg] ( 3 0 + 10 19 ) % D (2010) D anything gg] ( 2 5 + 11 20 ) % D (2010) D (2010) anything gg] ( 1 2 0 4 ) % D 2 (2460)0 anything ( 47 27 )% D s anything ( 18 5 )% + D s anything ( 10 1 3 1 ) % + c anything ( 97 29 )% c /c anything iii] (116 6 3 3 ) % Charmonium modes J =(1S)anything ( 1 16 0 10) %  (2S)anything ( 4 8 2 4 ) 10 c1 (1P)anything ( 15 05 )% K or K modes s ( 3 1 1 1 ) 10 s 64 10 K anything ( 74 6 )% 0 K S anything ( 29 0 2 9 ) % :





:



:

:





:



:

:

;

:

:

;

:

:

;

:

:

;

:



:

<

;



:

























:

:



:

:





:

:

:





3 CL=90%

:

;

:

:

;

:

:

;

:

:



:

:



:

;

;



:



:

:



:

:



:

:



:

:



:

:





;

:

<



:

:







:





:

{ { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { {

; ;

4 4 CL=90%

{ { { {



{

1 :1 ) %

{ { {

iii] (497 7 )% ( 1:7 + 10::07 ) 10 5 ( 7 21 ) 10 3 

;



;



;



Baryon modes ( 59 06 )% /anything b-baryon anything ( 10 2 2 8 ) % B = 1 weak neutral current (B1) modes

+ anything B1 32 10 4 CL=90% ;

<

:



:

:



:

:

{ { {

;



I(J P ) = 21 (1;)

B

I, J, P need conrmation. Quantum numbers shown are quark-model predictions. Mass m B  = 5325:0  0:6 MeV m B  ; m B = 45:78  0:35 MeV B DECAY MODES

Fraction (;i /;) dominant

 

B

p (MeV/c) 45

BOTTOM, STRANGE MESONS (B = 1, S = 1) B 0s = sb, B 0s = s b, similarly for B s 's 

I(J P ) = 0(0;)

B 0s

I, J, P need conrmation. Quantum numbers shown are quark-model predictions. Mass m B 0 = 5369:6  2:4 MeV s Mean life  = (1:461  0:057)  10 12 s c = 438 m B 0s -B 0s mixing parameters m B 0 = m B 0 { m B 0 > 14:4  1012 h s 1 , CL = 95% s sH sL > 94:8  10 10 MeV, CL = 95% xs = m B 0 /;B 0 > 20:6, CL = 95% s s s > 0:49883, CL = 95% ;

;

;

B 0s ), the LEP B 0s proThese branching fractions all scale with B(b B 0s ) = duction fraction. The rst four were evaluated using B(b B 0s ) = 12%. (10:7 1:4)% and the rest assume B(b !

!

!



The branching fraction B(B 0s D s `+ ` anything) is not a pure meaB 0s ) surement since the measured product branching fraction B(b B 0s ), as B(B 0s D s `+ ` anything) was used to determine B(b described in the note on \Production and Decay of b-Flavored Hadrons." For inclusive branching fractions, e.g., B D anything, the values usually are multiplicities, not branching fractions. They can be greater than one. !

;

!

!

;

B 0s DECAY MODES

D s anything D s `+  anything Ds + Ds ( )+ Ds ( ) J =(1S)  J =(1S) 0 J =(1S)   (2S)  ;

;

`

;

 ;

+

;



!

!



 

:

3

( 13:1

Other modes

;

{ { { { {

)% )% )% )%



Baryon modes

charged anything hadron+ hadron charmless

!

B+ B0 B 0s b-baryon Bc





p /panything

!

{ { {

(397 21 ) % iii] (278 60 ) % ( 2:82 0:23) %

 anything

!

!

Pion modes

anything

0 anything



p Condence level (MeV/c)

Fraction (;i /;)

(94 30 ) % kkk] ( 7:9 2:4) % < 13 % (23 +21 13 ) % ( 9 :3 3:3) 10 4 < 1 :2 10 3 < 3 :8 10 3 seen < 1 :7 10 4

{ {





2322

{

;











;

;

;

;

90% 90% 90%

1590 1788 1735 1123 2681

59

Meson Summary Table 0 0  0  0 0 0  +K; K+K;

< < < < < < < <

K (892)0 0 K (892)0 K (892)0  K (892)0  

<



<



<

pp

<



< <

+ ; e+ e; e   (1020) + ;  

2 :1 1 :0 1 :5 3:20 6:17 1:183 2 :1 5 :9 7:67 1:681 1:013 5 :9 1:48 1 :2

             

10 10 10 10 10 10 10 10 10 10 10 10 10 10

; ; ; ; ; ; ; ; ; ; ; ; ; ;

4 3 3 4 4 3 4 5 4 3 3 5 4 4

Lepton Family number (LF) violating modes or B = 1 weak neutral current (B1) modes B1 B1 LF B1 B1

<

gg]

< < < <

2 :0 5 :4 6 :1 4 :7 5 :4

    

10 10 10 10 10

; ;

6 5 6 5 3

; ; ;

90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90%

2681 2655 2628 2570 2528 2484 2660 2639 2551 2532 2508 2516 2685 2588

90% 90% 90% 90% 90%

2683 2685 2684 2584 2588

BOTTOM, CHARMED MESONS (B = C = 1) Bc

;

 

B(b

! !

;

Fraction (;i /;)

p Condence level (MeV/c)

!

;



;

;



;

;



;





;



{ 2448 2429 2255 2546

cc MESONS c (1S )

I G (J PC ) = 0+(0 ; +) Mass m = 2979:6  1:2 MeV (S = 1.7) Full width ; = 17:3 +22 75 MeV (S = 1.1) :

;

c (1S) DECAY MODES

 

 (958) 

K (892)0 K + + c.c. K (892)K (892) K+ K 

;





;

 a0 (980) a2 (1320)

K (892)K + c.c. f2 (1270) 

!!

p Condence level (MeV/c)

Decays involving hadronic resonances

0



:

Fraction (;i /;) (4:1 (2:6 (2:0 (8:5 (2:9 (2:6 < 2 < 2 < 1:28 < 1 :1 < 3 :1

     

1 :7 0 :9 0 :7 3 :1 1 :4 0 :9

)% )% )% ) 10 ) 10 ) 10 % % % % 10 







;

; ; ;

;

3 3 3

3

90% 90% 90% 90% 90%

1321 1272 1275 1194 1101 1086 1323 1194 1307 1143 1268

     

1 :6 ) % 1 :8 ) % 0 :6 ) % 0:7 ) 10 3 0:30) % 0:4 ) 10 3 % % 10 3 





;

;

90% 90% 90%

;

Radiative decays (4:3





1:5 ) 10 4 

1379 1426 1343 1053 1457 1157 1263 1024 987 1490

;

I G (J PC ) = 0;(1 ; ;) Mass m = 3096:916  0:011 MeV Full width ; = 91:0  3:2 keV ;e e = 5:40  0:15  0:07 keV

J =(1S )

Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (87:7 0:5 ) % { (17:0 2:0 ) % { ( 5:93 0:10) % 1548 ( 5:88 0:10) % 1545

J = =(1S) DECAY MODES

hadrons virtual ! hadrons e+ e









Decays involving hadronic resonances 0 0

K1 (1400) K 

The following quantities are not pure branching ratios rather the fraction Bc ). ;i /; B(b J =(1S) `+ ` anything (5:2 +22::41 ) 10 5 J =(1S) + < 8 :2 10 5 90% J =(1S) + + < 5 :7 10 4 90% 3 J =(1S)a1 (1260) < 1 :2 10 90% 0 + 3 < 6 :2 10 90% D (2010) D 

;

! + + ; ; ! + ; ! f2 (1270) K  (892)0 K 2 (1430)0 + c.c. ! K  (892)K + c.c. K + K  (892); + c.c. K 0 K  (892)0 + c.c.

:

Bc )

;

;

a2 (1320) 

;

B+ c DECAY MODES

;



I(J P ) = 0(0;) I, J, P need conrmation. Quantum numbers shown are quark-model predicitions. Mass m = 6:4  0:4 GeV 12 s Mean life  = (0:46 +00 18 16 )  10 B c modes are charge conjugates of the modes below.

+ K+K 2(K + K ) 2( + ) pp KK + pp 

+ ;



:

(5:7 (4:9 (1:5 (1:5 (1:20 (1:3 < 3 :1 < 1 :2 < 2



;

B +c = cb, B c = c b, similarly for B c 's ;

Decays into stable hadrons

KK



! 0 0 b1 (1235)  ! K  K 0S  b1 (1235)0 0  K  (892)K + c.c. !K K ! f0 (1710) ! ! K K  2( + ; ) (1232)++ p ; ! K K  f0 (1710) !  K K pp! (1232)++ (1232);; (1385); (1385)+ (or c.c.) p p 0 (958)  f 02 (1525)  + ;  K  K 0S  ! f1 (1420)  (1530);  + p K ; (1385)0 ! 0  0 (958)  f0 (980) (1530)0  0 (1385);  + (or c.c.)  f1 (1285)  !  0 (958) ! f0 (980)  0 (958) pp a2 (1320)  K K 2 (1430)+ c.c. K1 (1270) K  K 2 (1430)0 K 2 (1430)0

gg] gg]

gg]

gg]

gg]

gg]

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

< < < <

1:27 4 :2 1:09 8 :5 7 :2 4 :3 6 :7 5 :3 5 :0 4 :2 3 :8 3 :4 3 :0 2 :9 2 :3 2:04 1 :9 4 :8 1:60 1 :6 1:58 1:54 3 :6 1:30 1:10 1:03 9 8 8 :0 7 :2 6 :8 6 :5 5 :9 5 :1 4 :2 3 :3 3 :2 3 :2 3 :1 2 :6 1:93 1:67 1 :4 1:05 4 :5 4 :3 4 :0 3 :0 2 :9

                                            

0:09) % 0:5 ) 10 0:22) % 3:4 ) 10 1:0 ) 10 0:6 ) 10 2:6 ) 10 2:0 ) 10 0:4 ) 10 0:4 ) 10 1:4 ) 10 0:8 ) 10 0:5 ) 10 0:7 ) 10 0:6 ) 10 0:28) 10 0:4 ) 10 1:1 ) 10 0:32) 10 0:5 ) 10 0:16) 10 0:21) 10 0:6 ) 10 0:25) 10 0:29) 10 0:13) 10 4 ) 10 4 ) 10 1:2 ) 10 0:9 ) 10 2:4 ) 10 0:7 ) 10 1:5 ) 10 3:2 ) 10 0:6 ) 10 0:4 ) 10 0:9 ) 10 1:4 ) 10 0:5 ) 10 0:5 ) 10 0:23) 10 0:25) 10 0:5 ) 10 0:18) 10 1:5 ) 10 10 10 10 10 

































 











 





























 











;

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 3 3 3 3

;

;

;

;

;

;

;

;

;

;

;

;

;

;

; ;

; ;

;

;

;

S=1.3

;

;

;

;

S=1.7 S=2.7

;

;

;

;

;

;

;

S=1.4

;

;

S=1.9

;

;

;

S=1.1

; ;

; ;

;

;

;

;

;

CL=90% CL=90% CL=90% CL=90%

1448 1448 1123 1392 1435 1142 1012 1097 1373 1373 1171 1436 1300 1210 1300 969 1268 878 1318 1030 1394 1179 875 768 938 697 596 871 1365 1114 1062 1320 601 646 1446 1192 1182 608 855 1032 1396 1279 1271 1281 527 1263 1159 1231 604

60

Meson Summary Table K  (892)0 K  (892)0  f2 (1270) pp  (1405) !  ! f 02 (1525) (1385)0  (1232)+ p 0   0 2( + 3( + + +

; ;

< < < < < < < <

) 0 ) 0

;

( ( ( ( ( ( ( ( ( ( ( ( ( lll] ( ( ( ( ( ( ( ( gg] ( ( ( ( ( ( ( (

;

;

;

;

KK pp + 2( + ) 3( + ) nn + 00 2( + )K + K 0 pp + pp pp pn nn   pp 0  + (or c.c.) pK  2(K + K ) pK 0 K+K K 0S K 0L  0 ;

;

;

;

;

;

;

;

;

;

;

;

;

+

5 3 :7 3 :1 2 :5 2 :2 2 1 9 6 :8

        

10 10 10 10 10 10 10 10 10

; ;

4 4 4 4 4 4 4 5 6

; ;

;

;

;

; ;

CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%

Decays into stable hadrons

0 0K+K 4( + ) 0 + K+K ;

<

;

 + c.c. K 0S K 0S c (1S) + ;2 0   (1405=1475) ! K K  (1405=1475) ! 0  (1405=1475) !  +  2 (1870) ! + ;  0 (958) 2 +2 ; K+K; + ; f4 (2050) !!  (1405=1475) ! 0 0 f2 (1270) f0 (1710) ! K K  f1 (1420) ! K K f1 (1285) f1 (1510) !  + ; f 02 (1525) f2 (1950) ! K  (892)K  (892) K  (892)K  (892)  pp  (2225)  (1760) ! 0 0 (K K ) J PC =0 ; + 0 pp + ;

< <

3:37 2 :9 1:50 1:20 9 :0 7 :2 6 :1 6 :0 4 :0 4 :0 4 1:27 3 :1 2 :3 2:12 2:09 2:00 2 :2 1 :8 1:30 1:09 1:06 8 :9 9 :2 2 :9 2:37 1:46 2 :2 1:47 1 :5 5 :2

                            



































; ;

;

S=1.3

;

; ;

;





3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 6

;

;





; ;

; ; ; ;

;

;

;

; ; ;









S=1.8 S=1.1

;

;



S=1.9

S=1.3 S=2.7

;

; ;

;

CL=90% CL=90%

Radiative decays

;

( ( ( p] ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( < <

1 :3 0 :4 ) % 8:3 3:1 ) 10 6:1 1:0 ) 10 2:8 0:6 ) 10 6:4 1:4 ) 10 3:0 0:5 ) 10 4:5 0:8 ) 10 6:2 2:4 ) 10 4:31 0:30) 10 2:8 0:5 ) 10 2:1 0:6 ) 10 2:7 0:7 ) 10 1:59 0:33) 10 1:7 0:4 ) 10 1:38 0:14) 10 8:5 +10::29 ) 10 8:6 0:8 ) 10 7:9 1:3 ) 10 6:1 0:8 ) 10 4:5 1:2 ) 10 4:5 +00::74 ) 10 7:0 2:2 ) 10 











































































4 :0 4 :0 3 :8 2 :9 1 :3 7 3 :9 7 :9 5

      

;

; ; ; ; ; ; ; ; ; ; ;



1 :3 1 :2 1 :0 0 :6 0 :9 4 1 :3

) ) ) ) ) ) )

        

S=1.6

;

1496 1433 1533 1368 1345 1407 1442 1107 1517 1466 1106 988 1320 1033 1232 948 1174 1231 818 1074 1176 950 876 1131 819 1468 1466 998 1542 1034 1466 115 1518 1487 1223 1223

{

1340

{

S=1.9

S=1.3

;

S=1.2

;

;

;

1400 1517 1407 880 1336 1223 1286 1075 1500 1220 1283

;

{

;

1173



;

3 3 3 5 4 3 4 3 3 3 3 3 3 3 4 4 4 4 4 4 4

;



;

 13 10 4 CL=90% 3 55 10 5 CL=90% fJ (2220) 2 50 10 3 CL=99.9% fJ (2220) ! (8 4 ) 10 5 ( 8 1 3 0 ) 10 5 fJ (2220) ! K K ( 1 5 0 8 ) 10 5 fJ (2220) ! p p f0 (1500) ( 5 7 0 8 ) 10 4 + e e ( 8 8 1 4 ) 10 3 Lepton Family number (LF) violating modes e

LF 11 10 6 CL=90%

10 10 10 10 10 10 10 10 10

; ;

3 4 4 4 4 4 5 4 4

S=2.1

;

;

; ;

S=2.1

;

;

;

CL=90% CL=90%

1266 1166 1232 752 1048 1442 1546 1107 1548

:



<

:



>

:

>

;



<

c 0 (1P )

c0 (1P) DECAY MODES

2( +

;

;

;

;



;

;

+ c.c.

 K+K;K+K; K 0S K 0S + ;pp 

pp  K 0S K +

;

;

;



;



:



:



:



:



:



:



:



:



:

;

;

;

;

;



1074 1548 745

{ { {

1182 1548

1547

p Condence level (MeV/c)

Fraction (;i /;)

Hadronic decays

)

+ K+K 0 + 3( + ) K + K (892)0 K+K ;

;

I G (J PC ) = 0+(0 + +) Mass m = 3415:19  0:34 MeV Full width ; = 10:1  0:8 MeV

 

+ c.c.

(2:58 (2:1 (1:6 (1:27 (1:2 (6:0 (7:4 (2:1 (2:3 (2:1 (2:2 (1:0 (2:24 (4:7 < 8

             

0:31) % 0 :5 ) % 0 :5 ) % 0:22) % 0 :4 ) % 0:9 ) 10 0:8 ) 10 1:1 ) 10 0:5 ) 10 0:6 ) 10 0:8 ) 10 0:6 ) 10 0:27) 10 1:6 ) 10 10

3 3 3 3 3 3 3 4 4 4

;



;









;

;

;

;



;









;

;

;

Radiative decays

J = (1S)

(1:18 0:14) % (2:6 0:5 ) 10 4 



c 1 (1P )

;



90%

1679 1581 1607 1633 1524 1635 1702 1617 1334 1633 1320 1370 1427 1293 1610 303 1708

I G (J PC ) = 0+(1 + +) Mass m = 3510:59  0:10 MeV (S = 1.1) Full width ; = 0:91  0:13 MeV

c1 (1P) DECAY MODES

 

3( + 2( +

; ;

;

) )

;

;



;

;

;

;

pp  +

;

Fraction (;i /;)

Hadronic decays

+ K+K 0 + K + K (892)0 + c.c. K 0S K + + c.c. + pp K+K K+K ;

+ K+K

;

( ( ( ( ( ( ( ( ( (

<

6 :2 8 :2 4 :9 3 :9 3 :2 2 :5 5 :3 4 :2 7 :2 2 :6 2 :1

         

1:6) 2:9) 1:1) 3:5) 2:1) 0:7) 2:1) 1:9) 1:3) 1:2)

          

p (MeV/c) 10 10 10 10 10 10 10 10 10 10 10

; ; ; ;

;

;

;

;

c2 (1P) DECAY MODES

3( +

;

)

K+K ;

{

;

389

I G (J PC ) = 0+(2 + +)

 

;

; ;



Mass m = 3556:26  0:11 MeV Full width ; = 2:11  0:16 MeV

+

1683 1727 1632 1657 1577 1660 1381 1393 1483 1355

(31:6 3:3) %

c 2 (1P )

2( +

3 3 3 3 3 3 4 4 5 4 3

Radiative decays

J = (1S)

{

;

<





0:26) % 0 :6 ) % 0:20) % 0:30) % 3:0 ) 10 2:3 ) 10 1:0 ) 10 0:5 ) 10 1:0 ) 10 2:0 ) 10 4 ) 10 0:17) 10 1:3 ) 10 0:9 ) 10 0:10) 10 0:18) 10 0:10) 10 0:4 ) 10 0:4 ) 10 0:12) 10 0:09) 10 0:12) 10 1:6 ) 10 3:3 ) 10 0:8 ) 10 0:31) 10 0:26) 10 0:6 ) 10 0:23) 10 10 10 

1266 1036 774 946 1003 912 1100 1032 1377

p Condence level (MeV/c)

Fraction (;i /;)

Hadronic decays ;

)

0 + ; K + K  (892)0  + ;

;

+ c.c.

( ( ( ( ( ( (

1:48 1:24 1:07 7 4 :8 2 :4 1:77

      

0:21) % 0:33) % 0:24) % 4 ) 10 2:8 ) 10 0:9 ) 10 0:27) 10 







;

3 3 3 3

;

;

;

1751 1656 1707 1681 1602 1457 1773

61

Meson Summary Table 0 0  K+K;K+K; + ;pp K+K; K 0S K 0S

( 1 :1 1 :5 ( 1 :8 ( 1 :7 ( 9 :4 ( 7 :2 ( 6 :8 ( 3 :4 < 1 :5 < 1 :3



<

pp  0 J =(1S) + K 0S K + + c.c. ;

;

0:7 ) 10 10 0:5 ) 10 0:4 ) 10 2:1 ) 10 2:7 ) 10 0:7 ) 10 1:7 ) 10 % 10 



     















3 3 3 3 4 4 5 4

;

90%

;

;

; ; ;

; ;

;

90% 90%

3

Radiative decays

J = (1S)

(20:2 1:7 ) % ( 2:46 0:23) 10 4

430 1778







1773 1692 1421 1410 1708 1707 1510 1385 186 1685

;

Mass m = 3686:093  0:034 MeV (S = 1.4) Full width ; = 281  17 keV ;e e = 2:12  0:12 keV (2S) DECAY MODES

 

hadrons virtual ! hadrons e+ e ;

;

;

;

;

! + ; b1  ! f2 (1270) + ;K+K;

K (892)K 2 (1430)0 K1 (1270) K + pp K + K (892)0 + c.c. 2( + ) 0 + !K+K !pp 





;



;

;

;

;

pp  3( + ) pp 0 ++  00  + K+K K 0S K 0L ;

;;

;

;

+  +

0

;

;

 + K1 (1400) K  0 0 + K+K 0 K + K (892) + c.c. ;









;

;



 +  f0 (980) ! K+ K p p  f 2 (1525) ;

;

0

;

+

;

< <

       

0 :7 0 :8 0 :6 0 :6 0 :4 0 :4 1 :3 1 :6

)% )% )% ) 10 ) 10 ) 10 ) 10 ) 10 10 10 10 















3 4 4 5 5 4 5 4

261 171 128 639 1719 1622

;

;

;

;

;

; ; ;

CL=90% CL=90% CL=90%

{ {

1843 1802 1569

;

Fraction (;i /;) dominant (1:12 0:17) 10 5 

;



p Scale factor (MeV/c) 276 1.2 1885

I G (J PC ) = 0;(1 ; ;)  (4040) mmm] Mass m = 4040  10 MeV Full width ; = 52  10 MeV ;ee = 0:75  0:15 keV















;

;

;

     

( 3 :5 ( 3 :0 < 2 :3 ( 4 :8 ( 3 :2 < 1 :5 ( 1 :6 < 1 :2 ( 1:00 ( 8 :0 ( 6 :7 ( 4 :5 ( 4 :2 ( 1 :5 ( 8 :0 ( 2:07 ( 1:81 ( 1 :5 ( 1 :4 ( 1:28 ( 1 :2 ( 1 :1 ( 1 :0 ( 5 :2 (8 < 8 :3 (8 ( 9 :4 < 3 :1 < 8 :1 < 7 :3 < 2:96 < 5 :4 ( 1:50 ( 6 :0 ( 6 :0 < 2 :6 < 4 :5

 

1:6 ) 10 0:8 ) 10 10 0:9 ) 10 0:8 ) 10 10 0:4 ) 10 10 0:28) 10 2:0 ) 10 2:5 ) 10 1:0 ) 10 1:5 ) 10 0:4 ) 10 3:2 ) 10 0:31) 10 0:34) 10 1:0 ) 10 0:5 ) 10 0:35) 10 0:6 ) 10 0:4 ) 10 0:7 ) 10 0:7 ) 10 5 ) 10 10 5 ) 10 3:1 ) 10 10 10 10 10 10 0:28) 10 2:2 ) 10 2:2 ) 10 10 10 

















                





































 















  











477 481 199 528

;







{ {

2 :0 ) % 1 :2 ) % 1 :1 ) % 1 :2 ) % 0:22) % 2:1 ) 10 4

Hadronic decays

3( + ) 0 2( + ) 0  a2 (1320)

<

8 :6 8 :4 6 :4 2 :8 1 :5 2 :1 3 :0 6 :0 1 :5 9 1 :2

Mass m = 3770:0  2:4 MeV (S = 1.8) Full width ; = 23:6  2:7 MeV (S = 1.1) ;ee = 0:26  0:04 keV (S = 1.2)

(3770) DECAY MODES

DD e+ e

( ( ( ( ( ( ( (



(57:6 (24:6 (31:7 (18:8 ( 3:16 ( 9 :6

;



Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (97:85 0:13) % { ( 2:16 0:35) % S=2.1 { ( 7:55 0:31) 10 3 1843 3 ( 7:3 0:8 ) 10 1840 ( 2:8 0:7 ) 10 3 489

Radiative decays

I G (J PC ) = 0;(1 ; ;)

 

Decays into J =(1S)and anything

J =(1S)anything J =(1S)neutrals J =(1S) + J =(1S) 0 0 J =(1S)  J =(1S) 0



 (3770)

I G (J PC ) = 0;(1 ; ;)

 (2S )

+

+ 

c0 (1P) c1 (1P) c2 (1P) c (1S)  0 (958) f2 (1270) f0 (1710) ! f0 (1710) ! K K   (1405) ! K K

3 3 4 4 4 4 3 4 3 4 4 4 4 4 5 4 4 4 4 4 4 4 4 5 5 5 5 5 4 5 5 5 5 4 5 5 5 5

;

;

;

CL=90%

;

;

;

CL=90%

;

; ;

CL=90%

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

CL=90%

;

;

;

;

;

;

;

CL=90% CL=90% CL=90% CL=90% CL=90%

;

{

;

;

;

;

1746 1799 1500 1748 1635 1515 1726 1418 1581 1491 1674 1817 1750 1614 1247 1586 1467 1774 1543 1371 1405 1218 1776 1775 1830 1759 1838 1285 1532 1025 774 1754 1698 1690

CL=90% CL=90%

1546 1109 1321

(4040) DECAY MODES

 

e+ e D0 D0 D (2007)0 D 0 + c.c. D (2007)0 D (2007)0 ;







Fraction (;i /;) (1:4 0:4) 10 5 seen seen seen 

p (MeV/c) 2020 777 577 231

;



I G (J PC ) = 0;(1 ; ;)  (4160) mmm] Mass m = 4159  20 MeV Full width ; = 78  20 MeV ;ee = 0:77  0:23 keV (4160) DECAY MODES

 

e+ e

;

Fraction (;i /;) (10 4) 10 6 

p (MeV/c) 2080

;



I G (J PC ) = 0;(1 ; ;)  (4415) mmm] Mass m = 4415  6 MeV Full width ; = 43  15 MeV (S = 1.8) ;ee = 0:47  0:10 keV (4415) DECAY MODES

 

hadrons e+ e ;

Fraction (;i /;) dominant (1:1 0:4) 10 5 



p (MeV/c)

{

2207

;

bb MESONS (1S )

I G (J PC ) = 0;(1 ; ;) Mass m = 9460:30  0:26 MeV (S = 3.3) Full width ; = 53:0  1:5 keV ;ee = 1:314  0:029 keV

(1S) DECAY MODES +  e+ e

+

;

;

;

Fraction (;i /;) (2:67 +00::14 16 ) % (2:38 0:11) % (2:48 0:06) % ;





p Condence level (MeV/c) 4384 4730 4729

62

Meson Summary Table  0 (958)anything J =(1S)anything  + ; K+K;

pp

0 +

Hadronic decays 







Radiative decays (6:3 (1:7 (7:0 (5:4 (7:4 (2:9 (2:5 (2:5 (2:4 (1:5 (4 (2:0 < 1 :6 < 2 :1 < 1:4 (8 < 8:2 < 2 :6 < 2 < 1 :5 < 1:2 < 1:6 < 3 < 3

(X = pseudoscalar with m< 7:2 GeV)

X X



; ;

;

;

;

;



+ ; 0 0 2h+ 2h; 3h+ 3h; 4h+ 4h; + ;K+K; 2 +2 ; 3 +3 ; 2 +2 ;K+K; + ;pp 2 +2 ;pp 2K + 2K ;  0 (958)  f 02 (1525) f2 (1270)  (1405) f0 (1710) ! K K f0 (2200) ! K + K ; fJ (2220) ! K + K ; fJ (2220) ! + ; fJ (2220) ! p p  (2225) !  X

{





;

<

(X X = vectors with m< 3:1 GeV)

           

1 :8 0 :7 1 :5 2 :0 3 :5 0 :9 0 :9 1 :2 1 :2 0 :6 6 2 :0

) ) ) ) ) ) ) ) ) ) ) )













































1



90% 90% 90% 90% 90%

5 5 4 4 4 4 4 4 4 4 5 5 5 5 4 5 5 4 4 5 5 5 3 5

90% 90% 90% 90% 90% 90% 90% 90%

10 3

90%

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 4 ) 10 10 10 10 10 10 10 10 10 





;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

90% 90% 90%

;

;

; ; ; ; ; ;

;

;

4223 4697 4728 4704 4636 4725

4728 4728 4720 4703 4679 4686 4720 4703 4658 4604 4563 4601 4682 4714 4607 4644 4625 4576 4475 4469

{ {

4469

(1S)

Fraction (;i /;) <6 %

391

b1 (1P) DECAY MODES

 

(1S)

Fraction (;i /;) (35 8) % 

I G (J PC ) = 0+(2 + +) J needs conrmation. Mass m = 9912:6  0:5 MeV (S = 1.1)

b2 (1P) DECAY MODES

 

(1S)

(2S )



p (MeV/c) 442

Mass m = 10:02326  0:00031 GeV Full width ; = 43  6 keV ;ee = 0:576  0:024 keV

p Fraction (;i /;) Condence level (MeV/c) (18:8 0:6 ) % 475 ( 9 :0 0 :8 ) % 480 ( 1 :7 1 :6 ) % 4686 ( 1:31 0:21) % 5011 







;



;



;



b0 (2P) DECAY MODES (2S) (1S)

Fraction (;i /;) (4:6 2:1) % (9 6 ) 10 3

 

p (MeV/c) 207 743





;



b1 (2P ) nnn]

I G (J PC ) = 0+(1 + +) J needs conrmation. Mass m = 10:2552  0:0005 GeV m b1(2P) ; m b0(2P) = 23:5  1:0 MeV 



b1 (2P) DECAY MODES

p Scale factor (MeV/c) 1.5 229 1.3 764

Fraction (;i /;) (21 4 ) % ( 8:5 1:3) %

 

(2S) (1S)





b2 (2P ) nnn]

I G (J PC ) = 0+(2 + +) J needs conrmation. Mass m = 10:2685  0:0004 GeV m b2(2P) ; m b1(2P) = 13:5  0:6 MeV

b2 (2P) DECAY MODES (2S) (1S)

(3S )

(2S)anything (2S) + (2S) 0 0 (2S) (1S) + (1S) 0 0 (1S) 

;

Fraction (;i /;) (16:2 2:4) % ( 7:1 1:0) %

p (MeV/c) 242 776





Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (10:6 0:8 ) % 296 ( 2 :8 0 :6 ) % S=2.2 177 ( 2:00 0:32) % 190 ( 5 :0 0 :7 ) % 327 ( 4:48 0:21) % 813 ( 2:06 0:28) % 816 < 2 :2 10 3 CL=90% 677 ( 1:81 0:17) % 5177 seen 5178 











;





Radiative decays

b2 (2P) b1 (2P) b0 (2P)

(11:4 (11:3 ( 5 :4

(4S )

or



I G (J PC ) = 0;(1 ; ;) Mass m = 10:3552  0:0005 GeV Full width ; = 26:3  3:4 keV

+ ; e+ e;

I G (J PC ) = 0;(1 ; ;)

;

;

(22 4) % 

(2S) DECAY MODES (1S) + (1S) 0 0 + 

+

;

Fraction (;i /;)

90% 90% 90%

130 110 162 4865 4896 4930



;

b2 (1P ) nnn]

5012 531 126 4533



(3S) DECAY MODES p (MeV/c) 423

;

90% 90% 90%

I G (J PC ) = 0+(0 + +) J needs conrmation. Mass m = 10:2321  0:0006 GeV

b1 (1P ) nnn]

I G (J PC ) = 0+(1 + +) J needs conrmation. Mass m = 9892:7  0:6 MeV (S = 1.1)

;





( 6 :8 0 :7 ) % ( 7 :0 0 :6 ) % ( 3 :8 0 :6 ) % < 5 :9 10 4 < 5 :3 10 4 < 2:41 10 4

 

90%

;



Radiative decays



p Condence level (MeV/c)



b0 (2P ) nnn]

{

I G (J PC ) = 0+(0 + +) J needs conrmation. Mass m = 9859:9  1:0 MeV

b0 (1P) DECAY MODES

( 1:34 0:20) % 1 :1 10 3 < 2 10 3 < 6 10 3 <

b1 (1P) b2 (1P) b0 (1P) f0 (1710) f 02 (1525) f2 (1270)

{

b0 (1P ) nnn]

 

e+ e (1S) 0 (1S)  J =(1S)anything ;

(2:8 0:4 ) % (1:1 0:4 ) 10 3 < 2 10 4 < 5 10 4 < 5 10 4 < 5 10 4 < 1:84 10 5

(10580)

  

0 :8 ) % 0 :6 ) % 0 :6 ) %

S=1.3 S=1.1

I G (J PC ) = 0;(1 ; ;)

Mass m = 10:5800  0:0035 GeV Full width ; = 20  4 MeV ;ee = 0:248  0:031 keV (S = 1.3) (4S) DECAY MODES

BB non-B B e+ e J =(1S)anything ;

86 100 122

Fraction (;i /;) Condence > 96 % < 4 % ( 2:8 0:7) 10 5 < 1 :9 10 4 





;

;

p level (MeV/c) 95% 335 95% { 5290 95% {

63

Meson Summary Table D + anything + c.c.  anything (1S)anything (1S) + (2S) + 

< < <

;

<

;

<

7 :4 2 :3 4 1 :2 3 :9

%    

10 10 10 10

; ; ; ;

3 3 4 4

90% 90% 90% 90% 90%

5099 5240 1053 1027 469

I G (J PC ) = 0;(1 ; ;)

(10860)



Mass m = 10:865  0:008 GeV (S = 1.1) Full width ; = 110  13 MeV ;ee = 0:31  0:07 keV (S = 1.3)

(10860) DECAY MODES e+ e

Fraction (;i /;) (2:8 0:7) 10 6

;









p (MeV/c) 5432

;

r] See also the !(1650) Particle Listings. s] See the \Note on the (1450) and the (1700)" in the (1700) Particle Listings. t] See also the !(1420) Particle Listings. u] See the \Note on f0 (1710)" in the f0 (1710) Particle Listings . v] See the note in the K Particle Listings. w] The denition of the slope parameter g of the K ! 3 Dalitz plot is as follows (see also \Note on Dalitz Plot Parameters for K ! 3 Decays" in the K Particle Listings): M 2 = 1 + g(s3 ; s0 )/m2 + +    . x] For more details and denitions of parameters see the Particle Listings. y] Most of this radiative mode, the low-momentum part, is also included in the parent mode listed without 's. z] See the K Particle Listings for the energy limits used in this measurement. aa] Structure-dependent part. bb] Direct-emission branching fraction. cc] Violates angular-momentum conservation. dd] Derived from measured values of + , 00 ,  , m K 0 ; m K 0 , and L S  K 0 , as described in the introduction to \Tests of Conservation Laws." S ee] The CP-violation parameters are dened as follows (see also \Note on CP Violation in KS ! 3 " and \Note on CP Violation in K 0L Decay" in the Particle Listings): A(K 0L ! + )  + =  + e +; = = +  A(K 0S ! + ) A(K 0L ! 0 0 ) =  ; 2  00 =  00 e 00 = A(K 0S ! 0 0 ) ;(K 0L ! `+  ) ; ;(K 0L ! + `  ) , = 0 ;(K L ! `+  ) + ;(K 0L ! + `  ) 0 )CP viol ;(K 0S ! + , Im(+ 0 )2 = 0 + 0) ;(K L ! ;(K 0S ! 0 0 0 ) . Im(000 )2 = ;(K 0L ! 0 0 0 ) where for the last two relations CPT is assumed valid, i.e., Re(+ 0 ) ' 0 and Re(000 ) ' 0.  ] See the K 0S Particle Listings for the energy limits used in this measurement. gg] The value is for the sum of the charge states or particle/antiparticle states indicated. hh] Re( /) =  / to a very good approximation provided the phases satisfy CPT invariance. ii] See the K 0L Particle Listings for the energy limits used in this measurement. jj] Allowed by higher-order electroweak interactions. kk] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed. ll] See the \Note on f0 (1370)" in the f0 (1370) Particle Listings and in the 1994 edition. mm] See the note in the L(1770) Particle Listings in Reviews of Modern Physics 56 No. 2 Pt. II (1984), p. S200. See also the \Note on K2 (1770) and the K2 (1820)" in the K2 (1770) Particle Listings . nn] See the \Note on K2 (1770) and the K2 (1820)" in the K2 (1770) Particle Listings . oo] This result applies to Z 0 ! c c decays only. Here `+ is an average (not a sum) of e + and + decays. pp] This is a weighted average of D (44%) and D 0 (56%) branching fractions. See \D + andD 0 ! (  anything) / (total D + and D 0 )" under \D + Branching Ratios" in the Particle Listings. qq] This value averages the e + and + branching fractions, after making a small phase-space adjustment to the + fraction to be able to use it as an e + fraction hence our `+ here is really an e + . rr] An ` indicates an e or a mode, not a sum over these modes. 

I G (J PC ) = 0;(1 ; ;) Mass m = 11:019  0:008 GeV Full width ; = 79  16 MeV ;ee = 0:130  0:030 keV

(11020)

;

(11020) DECAY MODES e+ e

Fraction (;i /;) (1:6 0:5) 10 6

;





p (MeV/c) 5510

;

NOTES

;

In this Summary Table: When a quantity has \(S = : : :)" to its right, the errorpon the quantity has been enlarged by the \scale factor" S, dened as S = 2 =(N ; 1), where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1:25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction. A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame. a] See the \Note on ! `  and K ! `  Form Factors" in the Particle Listings for denitions and details. b] Measurements of ;(e + e )/;( +  ) always include decays with 's, and measurements of ;(e + e ) and ;( +  ) never include low-energy 's. Therefore, since no clean separation is possible, we consider the modes with 's to be subreactions of the modes without them, and let ;(e + e ) + ;( +  )]/;total = 100%. c] See the Particle Listings for the energy limits used in this measurement low-energy 's are not included. d] Derived from an analysis of neutrino-oscillation experiments. e] Astrophysical and cosmological arguments give limits of order 10 13 see the 0 Particle Listings. f ] Due to a new measurement in the average, this is 0.45 MeV larger than the mass we gave in our 2002 edition, 547:30  0:12 MeV. g] Due to removing an old measurement from the average, this is 0.11 keV larger than the width we gave in our 2002 edition, 1:18  0:11 keV. See the ;(2 ) data block in the Data Listings. h] C parity forbids this to occur as a single-photon process. i] See the \Note on scalar mesons" in the f0 (1370) Particle Listings . The interpretation of this entry as a particle is controversial. j] See the \Note on (770)" in the (770) Particle Listings . k] The !  interference is then due to !  mixing only, and is expected to be small. If e universality holds, ;(0 ! + ) = ;(0 ! e + e )  0.99785. l] See the \Note on scalar mesons" in the f0 (1370) Particle Listings . m] See the \Note on a1 (1260)" in the a1 (1260) Particle Listings . n] This is only an educated guess the error given is larger than the error on the average of the published values. See the Particle Listings for details. o] See the \Note on non-q q mesons" in the Particle Listings (see the index for the page number). p] See the \Note on the (1405)" in the (1405) Particle Listings. q] See the \Note on the f1 (1420)" in the (1405) Particle Listings. 

















;

;

;

;

;

i

0

;

i

0

;

;

;

;

:

;

;

;

;

0

0



64

Meson Summary Table ss] The branching fraction for this mode may di"er from the sum of the submodes that contribute to it, due to interference e"ects. See the relevant papers in the Particle Listings. tt] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings. uu] This value includes only + decays of the intermediate resonance, because branching fractions of this resonance are not known. vv] Unseen decay modes of the resonance are included. ww] This mode is not a useful test for a C=1 weak neutral current because both quarks must change !avor in this decay. xx] This D 01 ; D 02 limit is inferred from the D 0 -D 0 mixing ratio ;(K + (via D 0 )) / ;(K + ) near the end of the D 0 Listings. yy] The exclusive e + modes K e + e , K 0 e + e , K 0 e + e and e + e are constrained to equal this (well-measured) inclusive fraction. zz] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction. aaa] However, these upper limits are in serious disagreement with values obtained in another experiment. bbb] For now, we average together measurements of the X e + e and X +  branching fractions. This is the average, not the sum. ccc] This branching fraction includes all the decay modes of the nal-state resonance. ;

;

;

;

;

;

;



ddd] This value includes only K + K decays of the intermediate resonance, because branching fractions of this resonance are not known. eee] B 0 and B 0s contributions not separated. Limit is on weighted average of the two decay rates.  f ] These values are model dependent. See `Note on Semileptonic Decays' in the B + Particle Listings. ggg] D stands for the sum of the D(1 1P1 ), D(1 3P0 ), D(1 3P1 ), D(1 3P2 ), D(2 1S0 ), and D(2 1S1 ) resonances. hhh] D ( ) D ( ) stands for the sum of D D , D D, D D , and D D. iii] Inclusive branching fractions have a multiplicity denition and can be greater than 100%. jjj] Dj represents an unresolved mixture of pseudoscalar and tensor D (Pwave) states. kkk] Not a pure measurement. See note at head of B 0s Decay Modes. lll] Includes p p + and excludes p p , p p !, p p  . mmm]J PC known by production in e + e via single photon annihilation. I G is not known interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold e"ects in this energy region. nnn] Spectroscopic labeling for these states is theoretical, pending experimental information. ;

















;

0

;

65

Meson Summary Table

See also the table of suggested qq quark-model assignments in the Quark Model section. Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established. y Indicates that the value of J given is preferred, but needs conrmation. LIGHT UNFLAVORED S = C = B = 0)

(

IG (JPC ) 0



f0 (600)

(770) ! (782)  0 (958)

f0 (980) a0 (980)

(1020)

h1 (1170) b1 (1235) a1 (1260) f2 (1270) f1 (1285)  (1295)

(1300) a2 (1320) f0 (1370) h1 (1380) 1 (1400)  (1405) f1 (1420) ! (1420) f2 (1430) a0 (1450) (1450) (1450) f0 (1500) f1 (1510) f 02(1525) f2 (1565) h1 (1595) 1 (1600) a1 (1640) f2 (1640) 2 (1645) ! (1650) !3 (1670)

1; (0; ) 1; (0 ; + ) 0+(0 ; + )

0+(0 + + ) 1+(1 ; ; ) 0; (1 ; ; ) 0+(0 ; + ) 0+(0 + + ) 1; (0 + + ) 0; (1 ; ; ) 0; (1 + ; ) 1+(1 + ; ) 1; (1 + + ) 0+(2 + + ) 0+(1 + + ) 0+(0 ; + ) 1; (0 ; + ) 1; (2 + + ) 0+(0 + + ) ?; (1 + ; ) 1; (1 ; + ) 0+(0 ; + ) 0+(1 + + ) 0; (1 ; ; ) 0+(2 + + ) 1; (0 + + ) 1+(1 ; ; ) 0+(0 ; + ) 0+(0 + + ) 0+(1 + + ) 0+(2 + + ) 0+(2 + + ) 0; (1 + ; ) 1; (1 ; + ) 1; (1 + + ) 0+(2 + + ) 0+(2 ; + ) 0; (1 ; ; ) 0; (3 ; ; )

2

(1670)

(1680) 3 (1690) (1700)

a2(1700) f0(1710)  (1760)

(1800)

f2(1810)

3 (1850) 2 (1870) (1900)

f2(1910) f2(1950)

3 (1990)

f2(2010) f0(2020) a4(2040) f4(2050)

(2100) f0(2100) f2(2150) (2150) f0(2200) fJ (2220) 2

 (2225) 3 (2250)

f2(2300) f4(2300) f2(2340)

5 (2350)

a6(2450) f6(2510)

IG (JPC )

1; (2 ; + ) 0; (1 ; ; ) 1+ (3 ; ; ) 1+ (1 ; ; ) 1; (2 + + )

0+ (0 + + ) 0+ (0 ; + ) 1; (0 ; + ) 0+ (2 + + ) 0; (3 ; ; ) 0+ (2 ; + ) 1+ (1 ; ; ) 0+ (2 + + ) 0+ (2 + + ) 1+ (3 ; ; ) 0+ (2 + + ) 0+ (0 + + ) 1; (4 + + ) 0+ (4 + + ) 1; (2 ; + ) 0+ (0 + + ) 0+ (2 + + ) 1+ (1 ; ; ) 0+ (0 + + ) 0+ (2 + + or 4 + + ) 0+ (0 ; + ) 1+ (3 ; ; ) 0+ (2 + + ) 0+ (4 + + ) 0+ (2 + + ) 1+ (5 ; ; ) 1; (6 + + ) 0+ (6 + + )

OTHER LIGHT Further States

S=

STRANGE

(

1,

I(JP )

K K0 K 0S K 0L K 0(800) K (892) K1(1270) K1(1400) K (1410) K 0(1430) K 2(1430) K (1460) K2(1580) K (1630) K1(1650) K (1680) K2(1770) K 3(1780) K2(1820) K (1830) K 0(1950) K 2(1980) K 4(2045) K2(2250) K3(2320) K 5(2380) K4(2500) K (3100)

1/2(0;) 1/2(0;) 1/2(0;) 1/2(0;)

1/2(0+) 1/2(1;) 1/2(1+) 1/2(1+) 1/2(1;) 1/2(0+) 1/2(2+) 1/2(0;) 1/2(2;) 1/2(??) 1/2(1+) 1/2(1;) 1/2(2;) 1/2(3;) 1/2(2;) 1/2(0;) 1/2(0+) 1/2(2+) 1/2(4+) 1/2(2;) 1/2(3+) 1/2(5;) 1/2(4;) ?? (??? )

CHARMED C=

(

D D0 D (2007)0 D (2010) D1(2420)0 D1(2420) D 2(2460)0 D 2(2460) D (2640)

1)

1/2(0;) 1/2(0;) 1/2(1;) 1/2(1;) 1/2(1+) 1/2(??) 1/2(2+) 1/2(2+) 1/2(??)

CHARMED, STRANGE C=S=

(

Ds D s D sJ (2317) DsJ (2460) Ds 1(2536) Ds 2(2573)

BOTTOM

C = B = 0)

1)

0(0; ) 0(?? ) 0(0+) 0(1+) 0(1+) 0(?? )

B=

(

1)

IG (JPC )

B 1/2(0; ) B0 1/2(0; ) B /B 0 ADMIXTURE B /B 0 /B 0s /b-baryon ADMIXTURE Vcb and Vub CKM Matrix Elements B 1/2(1; ) B J (5732) ?(?? ) BOTTOM, STRANGE (B = 1, S = 1) B 0s 0(0; ) B s 0(1; ) B sJ (5850) ?(?? ) BOTTOM, CHARMED B=C=

(

Bc

c (1S ) J =(1S ) c 0 (1P ) c 1 (1P )

cc

hc (1P ) c 2 (1P ) c (2S )  (2S )  (3770)  (3836)

X (3872)  (4040)  (4160)  (4415)

b (1S )

(1S ) b0 (1P ) b1 (1P ) b2 (1P ) (2S ) b0 (2P ) b1 (2P ) b2 (2P ) (3S ) (4S ) (10860) (11020)

1)

0(0; )

bb

0+ (0 ; + ) 0; (1 ; ; ) 0+ (0 + + ) 0+ (1 + + ) ?? (??? ) 0+ (2 + + ) 0+ (0 ; + ) 0; (1 ; ; ) 0; (1 ; ; ) 0; (2 ; ; ) ?? (?? ) 0; (1 ; ; ) 0; (1 ; ; ) 0; (1 ; ; ) 0+ (0 ; + ) 0; (1 ; ; ) 0+ (0 + + ) 0+ (1 + + ) 0+ (2 + + ) 0; (1 ; ; ) 0+ (0 + + ) 0+ (1 + + ) 0+ (2 + + ) 0; (1 ; ; ) 0; (1 ; ; ) 0; (1 ; ; ) 0; (1 ; ; )

NON-qq CANDIDATES NON-qq CANDIDATES

66

Baryon Summary Table This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3or 4-star status are included in the main Baryon Summary Table. Due to insucient data or uncertain interpretation, the other entries in the short table are not established as baryons. The names with masses are of baryons that decay strongly. For N, , and resonances, the partial wave is indicated by the symbol L2I 2J , where L is the orbital angular momuntum (S, P, D, : : :), I is the isospin, and J is the total angular momentum. For and resonances, the symbol is LI 2J . p

P11

n

P11

N

P11

N

D13

(1440) (1520) N (1535) N (1650) N (1675) N (1680) N (1700) N (1710) N (1720) N (1900) N (1990) N (2000) N (2080) N (2090) N (2100) N (2190) N (2200) N (2220) N (2250) N (2600) N (2700)

S11 S11 D15 F15 D13 P11 P13 P13 F17 F15 D13 S11 P11 G17 D15 H19 G19 I1

11

K1

13

**** **** **** **** **** **** **** **** *** *** **** ** ** ** ** * * **** ** **** **** *** **

(1232) (1600) (1620) (1700) (1750) (1900) (1905) (1910) (1920) (1930) (1940) (1950) (2000) (2150) (2200) (2300) (2350) (2390) (2400) (2420) (2750) (2950) 

P33



P33

(1540)+  (1860) 

S31 D33 P31 S31 F35 P31 P33 D35 D33 F37 F35 S31 G37 H39 D35 F37 G39 H3 I3

11

13

K3

15

**** *** **** **** * ** **** **** *** *** * **** ** * * ** * * ** **** ** ** *** *



P01



S01

(1405) (1520) (1600) (1670) (1690) (1800) (1810) (1820) (1830) (1890) (2000) (2020) (2100) (2110) (2325) (2350) (2585)

D03 P01 S01 D03 S01 P01 F05 D05 P03

F07 G07 F05 D03 H09

**** **** **** *** **** **** *** *** **** **** **** * * **** *** * *** **

  

+ 0

;

(1385)  (1480)  (1560)  (1580)  (1620)  (1660)  (1670)  (1690)  (1750)  (1770)  (1775)  (1840)  (1880)  (1915)  (1940)  (2000)  (2030)  (2070)  (2080)  (2100)  (2250)  (2455)  (2620)  (3000)  (3170) 

P11 P11 P11 P13

D13 S11 P11 D13

S11 P11 D15 P13 P11 F15 D13 S11 F17 F15 P13 G17

**** **** **** **** * ** ** ** *** **** ** *** * **** * ** **** *** * **** * ** * *** ** ** * *

 

0

;

(1530) (1620)  (1690)  (1820)  (1950)  (2030)  (2120)  (2250)  (2370)  (2500) 

P11 P13



D13

**** **** **** * *** *** *** *** * ** ** *

;

**** *** ** **

+ c

**** *** *** * ** **** *** *** *** *** *** *** *** *** ***



(2250); ;  (2380) ;  (2470) 



(2593)+ + c (2625) + c (2765) + c (2880) c (2455) c (2520) c

+ c 0  c 0+  c 00  c



(2645) (2790) c (2815) c c





0 c

+ cc

0 b 0 b





**** Existence is certain, and properties are at least fairly well explored. *** Existence ranges from very likely to certain, but further conrmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined. ** Evidence of existence is only fair. * Evidence of existence is poor.

P11

,  ;b

* *** *

67

Baryon Summary Table

N BARYONS (S = 0, I = 1/2)

p, N + = uud n, N 0 = udd

p

I(J P ) = 21 ( 21 + ) Mass m = 1:00727646688 0:00000000013 u Mass m = 938:27203 0:00008 MeV a] m p ; m p /m p < 1:0  10;8, CL = 90% b] qp qp m p /( m p ) = 0:99999999991 0:00000000009 qp + qp /e < 1:0  10;8, CL = 90% b] qp + qe /e < 1:0  10;21 c] Magnetic moment  = 2:792847351 0:000000028 N  ( p +  p ) p = (; 2:6 2:9)  10;3 ; Electric dipole moment d < 0:54  10 23 e cm Electric polarizability  = (12:0 0:6)  10;4 fm3 Magnetic polarizability  = (1:9 0:5)  10;4 fm3 Charge radius = 0:870 0:008 fm Mean life  > 2:1  1029 years, CL = 90% (p ! invisible mode) Mean life  > 1031 to 1033 years d] (mode dependent) D50, See the \Note on Nucleon Decay" in our 1994 edition (Phys. Rev. D50 1673) for a short review. The \partial mean life" limits tabulated here are the limits on /Bi , where is the total mean life and Bi is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

p DECAY MODES

N ! e+  N ! +  N !  p ! e+ p ! + n !  N ! e+

N ! +

N ! 

p ! e+ ! p ! + ! n ! ! N ! e+ K p ! e + K 0S p ! e + K 0L N ! + K p ! + K 0S p ! + K 0L N ! K n !  K 0S p ! e + K  (892)0 N !  K (892) p! p! n! p! p! n! n!

e + + ; e + 0 0 e + ; 0 + + ;  

n! n! n! n! n! n!

e ; + ; +   e ; + ; + 

e; K + ; +  K

+ 0 0 + ; 0 e + K 0 ; 



Partial mean life (1030 years)

Antilepton + meson

Antilepton + mesons 82 147 > 52 > 133 > 101 > 74 > 18

>

>

Lepton + meson 65 49 > 62 >7 > 32 > 57

> >

e ; + + e ; + 0 ; + +   ; + 0   e ; + K + ; +K+  

p! p! n! p! n!

e+

p! p! p! n! n! n! p! p! p! p! n!



+



e+



e+ e+ e; e + + ; e+   e+ e;  + ;  e + ;    + + e;  e + + ;    

+

e ; + + 3

N ! e + anything N ! + anything N ! e + 0 anything

p Condence level (MeV/c)

158 (n), > 1600 (p) > 100 (n), > 473 (p) > 112 (n), > 25 (p) > 313 > 126 > 158 > 217 (n), > 75 (p) > 228 (n), > 110 (p) > 19 (n), > 162 (p) > 107 > 117 > 108 > 17 (n), > 150 (p) > 120 > 51 > 26 (n), > 120 (p) > 150 > 83 > 86 (n), > 670 (p) > 51 > 84 > 78 (n), > 51 (p) >

p! n! p! n! p! p!

90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90%

459 453 459 309 297 310 148 113 148 143 105 144 339 337 337 329 326 326 339 338 45 45

90% 90% 90% 90% 90% 90% 90%

448 449 449 425 427 427 319

90% 90% 90% 90% 90% 90%

459 453 149 114 340 330

Lepton + mesons 30 29 > 17 > 34 > 75 > 245 >

>

Antilepton + photon(s) 670 478 > 28 > 100 > 219 >

>

Three (or more) leptons 793 359 > 17 > 257 > 83 > 79 > 529 > 675 > 21 >6 > 0:0005 >

>

Inclusive modes > 0:6

(n, p) 12 (n, p) > 0:6 (n, p)

>

90% 90% 90% 90% 90% 90%

448 449 425 427 320 279

90% 90% 90% 90% 90%

469 463 470 469 470

90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90%

469 457 469 470 464 458 463 439 463 457 470

90% 90% 90%

{ { {

90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90%

{ { { { { { { { { { {

B = 2 dinucleon modes pp ! pn ! nn ! nn ! pp ! pp ! pp ! pn ! pn ! nn ! pp !

The following are lifetime limits per iron nucleus. + +  > 0:7 + 0  >2 + ;   > 0:7 0 0   > 3:4 + + e e > 5: 8 + + e  > 3: 6 + +   > 1: 7 > 2:8 e+  + > 1:6   > 0:000049 e  e neutrinos > 0:00005

p DECAY MODES p DECAY MODES

p! p! p! p! p! p! p! p! p! p! p! p! p!

e; ;  e ; 0 ; 0   e; ;  e ; K 0S ; 0  K S e ; K 0L ; 0  K L e; ;  e; !

Partial mean life (years) > 7  105 > 5  104 > 4  105 > 5  104 > 2  104 > 8  103 > 900 > 4  103 > 9  103 > 7  103 > 2  104 > 2  104 > 200

p Condence level (MeV/c) 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90%

469 463 459 453 309 297 337 326 337 326 469 463 143

68

Baryon Summary Table n

I(J P ) = 21 ( 21 + ) Mass m = 1:0086649156 0:0000000006 u Mass m = 939:56536 0:00008 MeV a] m n ; m p = 1:2933317 0:0000005 MeV = 0:0013884487 0:0000000006 u Mean life  = 885:7 0:8 s c = 2:655  108 km Magnetic moment  = ; 1:9130427 0:0000005 N Electric dipole moment d < 0:63  10;25 e cm, CL = 90% Mean-square charge radius r2n = ; 0:1161 0:0022 fm2 (S = 1.3) Electric polarizability  = (11:6 1:5)  10;4 fm3 Magnetic polarizability  = (3:7 2:0)  10;4 fm3 Charge q = (; 0:4 1:1)  10;21 e Mean nn-oscillation time > 8:6  107 s, CL = 90% (free n) Mean nn-oscillation time > 1:3  108 s, CL = 90% e] (bound n) Decay parameters f ]

 g A / g V = ; 1:2695 0:0029 (S = 2.0) p e; e " A = ; 0:1173 0:0013 (S = 2.3) " B = 0:983 0:004 " a = ; 0:103 0:004 " AV = (180:08 0:10) g] " D = (; 0:6 1:0)  10;3

n DECAY MODES

p e; e p e; e

Fraction (;i /;) 100 % h] < 6:9  10;3

N (1440) P11

68%

1

I(J P ) = 21 ( 21 + )

Breit-Wigner mass = 1430 to 1470 ( 1440) MeV Breit-Wigner full width = 250 to 450 ( 350) MeV pbeam = 0:61 GeV=c 4 2 = 31:0 mb Re(pole position) = 1345 to 1385 ( 1365) MeV ; 2Im(pole position) = 160 to 260 ( 210) MeV N(1440) DECAY MODES

N N  

N

N (  )I=0 S -wave

p p , helicity=1/2 n n , helicity=1/2

N (1520) D13

Fraction (;i /;) 60{70 % 30{40 % 20{30 % <8 % 5{10 % 0:035{0:048 % 0:035{0:048 % 0:009{0:032 % 0:009{0:032 %

N N N 

y {



N

N (  )I=0 S -wave

p p , helicity=1/2 p , helicity=3/2 n n , helicity=1/2 n , helicity=3/2

50{60 % (2:3  0:4)  10;3 40{50 % 15{25 % 15{25 % <8 % 0:46{0:56 % 0:001{0:034 % 0:44{0:53 % 0:30{0:53 % 0:04{0:10 % 0:25{0:45 %



N

N (  )I=0 S -wave N(1440) 

p p , helicity=1/2 n n , helicity=1/2

N (1650) S11

N(1650) DECAY MODES

N N K N 

p p , helicity=1/2 n n , helicity=1/2

N (1675) D15

N N K N  

N

457 154 414 230

y {

470 470 470 470 470 470

35{55 % 30{55 % 1{10 % <1 % <4 % <3 % <7 % 0:15{0:35 % 0:15{0:35 % 0:004{0:29 % 0:004{0:29 %

p (MeV/c) 468 186 426 244

y { y

481 481 480 480

I(J P ) = 21 ( 21 ; )

Fraction (;i /;) 55{90 % 3{10 % 3{11 % 10{20 % 1{7 % 4{12 % <4 % <5 % 0:04{0:18 % 0:04{0:18 % 0:003{0:17 % 0:003{0:17 %

p (MeV/c) 547 348 169 514 345

y {

150 558 558 557 557

I(J P ) = 21 ( 25 ; )

Breit-Wigner mass = 1670 to 1685 ( 1675) MeV Breit-Wigner full width = 140 to 180 ( 150) MeV pbeam = 1:01 GeV=c 4 2 = 15:4 mb Re(pole position) = 1655 to 1665 ( 1660) MeV ; 2Im(pole position) = 125 to 155 ( 140) MeV N(1675) DECAY MODES

p (MeV/c)

Fraction (;i /;)

Breit-Wigner mass = 1640 to 1680 ( 1650) MeV Breit-Wigner full width = 145 to 190 ( 150) MeV pbeam = 0:96 GeV=c 4 2 = 16:4 mb Re(pole position) = 1640 to 1680 ( 1660) MeV ; 2Im(pole position) = 150 to 170 ( 160) MeV

414 414 413 413

I(J P ) = 21 ( 23 ; )

Fraction (;i /;)

N N N 



Breit-Wigner mass = 1515 to 1530 ( 1520) MeV Breit-Wigner full width = 110 to 135 ( 120) MeV pbeam = 0:74 GeV=c 4 2 = 23:5 mb Re(pole position) = 1505 to 1515 ( 1510) MeV ; 2Im(pole position) = 110 to 120 ( 115) MeV N(1520) DECAY MODES

N(1535) DECAY MODES

N

N (  )I=0 S -wave N(1440) 

p (MeV/c) 398 347 147

I(J P ) = 21 ( 21 ; )

Breit-Wigner mass = 1520 to 1555 ( 1535) MeV Breit-Wigner full width = 100 to 200 ( 150) MeV pbeam = 0:76 GeV=c 4 2 = 22:5 mb Re(pole position) = 1495 to 1515 ( 1505) MeV ; 2Im(pole position) = 90 to 250 ( 170) MeV

p Condence level (MeV/c) 1 90% 1

Charge conservation (Q) violating mode Q < 8  10;27

p e  e

N (1535) S11

p p , helicity=1/2 p , helicity=3/2 n n , helicity=1/2 n , helicity=3/2

Fraction (;i /;) 40{50 % (0:0  1:0) % <1 % 50{60 % 50{60 % < 1{3 % 0:004{0:023 % 0:0{0:015 % 0:0{0:011 % 0:02{0:12 % 0:006{0:046 % 0:01{0:08 %

p (MeV/c) 564 376 216 532 366

y

575 575 575 574 574 574

69

Baryon Summary Table N (1680) F15

N (1720) P13

I(J P ) = 21 ( 25 + )

Breit-Wigner mass = 1675 to 1690 ( 1680) MeV Breit-Wigner full width = 120 to 140 ( 130) MeV pbeam = 1:01 GeV=c 4 2 = 15:2 mb Re(pole position) = 1665 to 1675 ( 1670) MeV ; 2Im(pole position) = 105 to 135 ( 120) MeV N(1680) DECAY MODES

N N N  

N

N (  )I=0 S -wave

p p , helicity=1/2 p , helicity=3/2 n n , helicity=1/2 n , helicity=3/2

N (1700) D13

Fraction (;i /;) 60{70 % (0:0  1:0) % 30{40 % 5{15 % 3{15 % 5{20 % 0:21{0:32 % 0:001{0:011 % 0:20{0:32 % 0:021{0:046 % 0:004{0:029 % 0:01{0:024 %

Breit-Wigner mass = 1650 to 1750 ( 1720) MeV Breit-Wigner full width = 100 to 200 ( 150) MeV pbeam = 1:09 GeV=c 4 2 = 13:9 mb Re(pole position) = 1650 to 1750 ( 1700) MeV ; 2Im(pole position) = 110 to 390 ( 250) MeV p (MeV/c) 568 381 535 370

y {

578 578 578 577 577 577

I(J P ) = 21 ( 23 ; )

N N K N  N

p p , helicity=1/2 p , helicity=3/2 n n , helicity=1/2 n , helicity=3/2

N (1710) P11

Fraction (;i /;) 5{15 % (0:0  1:0) % <3 % 85{95 % <35 % 0:01{0:05 % 0:0{0:024 % 0:002{0:026 % 0:01{0:13 % 0:0{0:09 % 0:01{0:05 %

p (MeV/c) 581 402 255 550

y

591 591 591 590 590 590

N N N! K N  

N

N (  )I=0 S -wave

p p , helicity=1/2 n n , helicity=1/2

Fraction (;i /;) 10{20 % ( 6:2  1:0) % (13:0  2:0) % 5{25 % 40{90 % 15{40 % 5{25 % 10{40 % 0:002{0:05% 0:002{0:05% 0:0{0:02% 0:0{0:02%

N N K N  N

p p , helicity=1/2 p , helicity=3/2 n n , helicity=1/2 n , helicity=3/2

N (2190) G17

N(2190) DECAY MODES

N N

N (2220) H19

Fraction (;i /;) 10{20 % (4:0  1:0) % 1{15 % >70 % 70{85 % 0:003{0:10 % 0:003{0:08 % 0:001{0:03 % 0:002{0:39 % 0:0{0:002 % 0:001{0:39 %

p (MeV/c) 594 422 283 564 71 604 604 604 603 603 603

I(J P ) = 21 ( 27 ; )

N(2220) DECAY MODES

N (2250) G19

p (MeV/c) 588 412

y

269 557 394

y {

598 598 597 597

Fraction (;i /;) 10{20 % (0:0  1:0) %

p (MeV/c) 888 791

I(J P ) = 21 ( 29 + )

Breit-Wigner mass = 2180 to 2310 ( 2220) MeV Breit-Wigner full width = 320 to 550 ( 400) MeV pbeam = 2:14 GeV=c 4 2 = 5:97 mb Re(pole position) = 2100 to 2240 ( 2170) MeV ; 2Im(pole position) = 370 to 570 ( 470) MeV N

I(J P ) = 21 ( 21 + )

Breit-Wigner mass = 1680 to 1740 ( 1710) MeV Breit-Wigner full width = 50 to 250 ( 100) MeV pbeam = 1:07 GeV=c 4 2 = 14:2 mb Re(pole position) = 1670 to 1770 ( 1720) MeV ; 2Im(pole position) = 80 to 380 ( 230) MeV N(1710) DECAY MODES

N(1720) DECAY MODES

Breit-Wigner mass = 2100 to 2200 ( 2190) MeV Breit-Wigner full width = 350 to 550 ( 450) MeV pbeam = 2:07 GeV=c 4 2 = 6:21 mb Re(pole position) = 1950 to 2150 ( 2050) MeV ; 2Im(pole position) = 350 to 550 ( 450) MeV

Breit-Wigner mass = 1650 to 1750 ( 1700) MeV Breit-Wigner full width = 50 to 150 ( 100) MeV pbeam = 1:05 GeV=c 4 2 = 14:5 mb Re(pole position) = 1630 to 1730 ( 1680) MeV ; 2Im(pole position) = 50 to 150 ( 100) MeV N(1700) DECAY MODES

I(J P ) = 21 ( 23 + )

Fraction (;i /;) 10{20 %

p (MeV/c) 906

I(J P ) = 21 ( 29 ; )

Breit-Wigner mass = 2170 to 2310 ( 2250) MeV Breit-Wigner full width = 290 to 470 ( 400) MeV pbeam = 2:21 GeV=c 4 2 = 5:74 mb Re(pole position) = 2080 to 2200 ( 2140) MeV ; 2Im(pole position) = 280 to 680 ( 480) MeV

N(2250) DECAY MODES

N

Fraction (;i /;) 5{15 %

p (MeV/c) 924

N (2600) I1 11

I(J P ) = 21 ( 112 ;) Breit-Wigner mass = 2550 to 2750 ( 2600) MeV Breit-Wigner full width = 500 to 800 ( 650) MeV pbeam = 3:12 GeV=c 4 2 = 3:86 mb

N(2600) DECAY MODES

N

Fraction (;i /;) 5{10 %

p (MeV/c) 1126

70

Baryon Summary Table BARYONS (S = 0, I = 3/2)

++ = u u u,

(1232) P33

+ = uud,

0 = udd,

(1905) F35

Breit-Wigner mass = 1870 to 1920 ( 1905) MeV Breit-Wigner full width = 280 to 440 ( 350) MeV pbeam = 1:45 GeV=c 4 2 = 9:62 mb Re(pole position) = 1800 to 1860 ( 1830) MeV ; 2Im(pole position) = 230 to 330 ( 280) MeV

; = ddd

I(J P ) = 23 ( 23 + )

(1905) DECAY MODES

Breit-Wigner mass (mixed charges) = 1230 to 1234 ( 1232) MeV Breit-Wigner full width (mixed charges) = 115 to 125 ( 120) MeV pbeam = 0:30 GeV=c 4 2 = 94:8 mb Re(pole position) = 1209 to 1211 ( 1210) MeV ; 2Im(pole position) = 98 to 102 ( 100) MeV (1232) DECAY MODES

N N N , helicity=1/2 N , helicity=3/2

(1600) P33

Fraction (;i /;) >99 % 0:52{0:60 % 0:11{0:13 % 0:41{0:47 %

N N  

N

N N , helicity=1/2 N , helicity=3/2

p (MeV/c) 229 259 259 259

(1600) DECAY MODES



N

N(1440)  N N , helicity=1/2 N , helicity=3/2

(1620) S31

Fraction (;i /;) 10{25 % 75{90 % 40{70 % <25 % 10{35 % 0:001{0:02 % 0:0{0:02 % 0:001{0:005 %

(1910) DECAY MODES

p (MeV/c) 513 477 303

(1620) DECAY MODES

I(J P ) = 23 ( 21 ; )



N

N N , helicity=1/2

(1700) D33

Fraction (;i /;) 20{30 % 70{80 % 30{60 % 7{25 % 0:004{0:044 % 0:004{0:044 %

(1920) P33

(1920) DECAY MODES

N K

y

538 538

I(J P ) = 23 ( 23 ; )

(1700) DECAY MODES



N

N N , helicity=1/2 N , helicity=3/2

Fraction (;i /;) 10{20 % 80{90 % 30{60 % 30{55 % 0:12{0:26 % 0:08{0:16 % 0:025{0:12 %

Fraction (;i /;) 15{30 % 0:0{0:2 % 0:0{0:2 %

p (MeV/c) 717 725 725

I(J P ) = 23 ( 23 + )

Fraction (;i /;)

p (MeV/c) 723 431

I(J P ) = 23 ( 25 ; )

Breit-Wigner mass = 1920 to 1970 ( 1930) MeV Breit-Wigner full width = 250 to 450 ( 350) MeV pbeam = 1:50 GeV=c 4 2 = 9:21 mb Re(pole position) = 1840 to 1940 ( 1890) MeV ; 2Im(pole position) = 200 to 300 ( 250) MeV (1930) DECAY MODES

N N N , helicity=1/2 N , helicity=3/2

(1950) F37

Breit-Wigner mass = 1670 to 1770 ( 1700) MeV Breit-Wigner full width = 200 to 400 ( 300) MeV pbeam = 1:05 GeV=c 4 2 = 14:5 mb Re(pole position) = 1620 to 1700 ( 1660) MeV ; 2Im(pole position) = 150 to 250 ( 200) MeV N N 

I(J P ) = 23 ( 21 + )

5{20 % (2:10  0:30) %

(1930) D35

p (MeV/c) 527 492 320

p (MeV/c) 714 690 542 414 721 721 721

Breit-Wigner mass = 1900 to 1970 ( 1920) MeV Breit-Wigner full width = 150 to 300 ( 200) MeV pbeam = 1:48 GeV=c 4 2 = 9:37 mb Re(pole position) = 1850 to 1950 ( 1900) MeV ; 2Im(pole position) = 200 to 400 ( 300) MeV

y

82 525 525 525

Fraction (;i /;) 5{15 % 85{95 % <25 % >60 % 0:01{0:03 % 0:0{0:1 % 0:004{0:03 %

Breit-Wigner mass = 1870 to 1920 ( 1910) MeV Breit-Wigner full width = 190 to 270 ( 250) MeV pbeam = 1:46 GeV=c 4 2 = 9:54 mb Re(pole position) = 1830 to 1880 ( 1855) MeV ; 2Im(pole position) = 200 to 500 ( 350) MeV N N N , helicity=1/2

Breit-Wigner mass = 1615 to 1675 ( 1620) MeV Breit-Wigner full width = 120 to 180 ( 150) MeV pbeam = 0:91 GeV=c 4 2 = 17:7 mb Re(pole position) = 1580 to 1620 ( 1600) MeV ; 2Im(pole position) = 100 to 130 ( 115) MeV N N 

(1910) P31

I(J P ) = 23 ( 23 + )

Breit-Wigner mass = 1550 to 1700 ( 1600) MeV Breit-Wigner full width = 250 to 450 ( 350) MeV pbeam = 0:87 GeV=c 4 2 = 18:6 mb Re(pole position) = 1500 to 1700 ( 1600) MeV ; 2Im(pole position) = 200 to 400 ( 300) MeV N N 

I(J P ) = 23 ( 25 + )

Fraction (;i /;) 10{20 % 0:0{0:02 % 0:0{0:01 % 0:0{0:01 %

p (MeV/c) 729 737 737 737

I(J P ) = 23 ( 27 + )

Breit-Wigner mass = 1940 to 1960 ( 1950) MeV Breit-Wigner full width = 290 to 350 ( 300) MeV pbeam = 1:54 GeV=c 4 2 = 8:91 mb Re(pole position) = 1880 to 1890 ( 1885) MeV ; 2Im(pole position) = 210 to 270 ( 240) MeV p (MeV/c) 581 550 386

y

591 591 591

(1950) DECAY MODES

N N  

N

N N , helicity=1/2 N , helicity=3/2

Fraction (;i /;) 35{40 % 20{30 % <10 % 0:08{0:13 % 0:03{0:055 % 0:05{0:075 %

p (MeV/c) 742 719 575 463 749 749 749

71

Baryon Summary Table (2420) H3 11

(1520) D03

I(J P ) = 23 ( 112 +)

Breit-Wigner mass = 2300 to 2500 ( 2420) MeV Breit-Wigner full width = 300 to 500 ( 400) MeV pbeam = 2:64 GeV=c 4 2 = 4:68 mb Re(pole position) = 2260 to 2400 ( 2330) MeV ; 2Im(pole position) = 350 to 750 ( 550) MeV (2420) DECAY MODES

N

Fraction (;i /;) 5{15 %

Mass m = 1519:5 1:0 MeV k] Full width ; = 15:6 1:0 MeV k] pbeam = 0:39 GeV=c 4 2 = 82:8 mb (1520) DECAY MODES p (MeV/c) 1023

EXOTIC BARYONS

Minimum quark content:  + = u u d d s,  ;; = s s d d u,  + = s s u u d.

 (1540)+

(1600) DECAY MODES

NK 

(1670) S01

N K is the only strong decay mode allowed for a strangeness S=+1 resonance of this mass. Fraction (;i /;)

KN

100%

270

(1670) DECAY MODES

NK  

(1690) D03

0 = uds

Mass m = 1115 :683 0:006 MeV  (m  ; m ) m  = (; 0:1 1:1)  10;5 (S = 1.6) Mean life  = (2:632 0:020)  10;10 s (S = 1.6) c = 7:89 cm Magnetic moment  = ; 0:613 0:004 N Electric dipole moment d < 1:5  10;16 e cm, CL = 95% Decay parameters p ; ; = 0:642 0:013 "  ; = ( ; 6 :5 3:5) i] " ; = 0:76 " ; = (8 4) i] n 0 0 = +0:65 0:05 g A /g V = ; 0:718 0:015 f ] p e; e p ; n 0 n p ; p e; e p ;  

Fraction (;i /;)

(63:9  0:5 ) % (35:8  0:5 ) % ( 1:75  0:15)  10;3 j] ( 8:4  1:4 )  10;4 ( 8:32  0:14)  10;4 ( 1:57  0:35)  10;4

(1405) S01

(1690) DECAY MODES

NK     

(1800) S01

p (MeV/c) 101 104 162 101 163 131

(1800) DECAY MODES

NK  (1385)  N K  (892)

(1810) P01

p (MeV/c) 343 338

I(J P ) = 0( 21 ;)

Fraction (;i /;) 20{30 % 25{55 % 10{25 %

p (MeV/c) 414 394 70

I(J P ) = 0( 23 ;)

Fraction (;i /;) 20{30 % 20{40 %  25 %  20 %

p (MeV/c) 433 410 419 358

I(J P ) = 0( 21 ;)

Fraction (;i /;) 25{40 % seen seen seen

p (MeV/c) 528 494 349

y

I(J P ) = 0( 21 +)

Mass m = 1750 to 1850 ( 1810) MeV Full width ; = 50 to 250 ( 150) MeV pbeam = 1:04 GeV=c 4 2 = 17:0 mb

I(J P ) = 0( 21 ;)

Fraction (;i /;) 100 %

Fraction (;i /;) 15{30 % 10{60 %

Mass m = 1720 to 1850 ( 1800) MeV Full width ; = 200 to 400 ( 300) MeV pbeam = 1:01 GeV=c 4 2 = 17:5 mb

Mass m = 1406 4 MeV Full width ; = 50:0 2:0 MeV Below K N threshold (1405) DECAY MODES

I(J P ) = 0( 21 +)

Mass m = 1685 to 1695 ( 1690) MeV Full width ; = 50 to 70 ( 60) MeV pbeam = 0:78 GeV=c 4 2 = 26:1 mb

I(J P ) = 0( 21 +)

 DECAY MODES

p (MeV/c) 243 268 259 169 350

Mass m = 1660 to 1680 ( 1670) MeV Full width ; = 25 to 50 ( 35) MeV pbeam = 0:74 GeV=c 4 2 = 28:5 mb

p (MeV/c)

 BARYONS (S = ; 1, I = 0)



(1600) P01

Fraction (;i /;) 45  1% 42  1% 10  1% 0:9  0:1% 0:8  0:2%

Mass m = 1560 to 1700 ( 1600) MeV Full width ; = 50 to 250 ( 150) MeV pbeam = 0:58 GeV=c 4 2 = 41:6 mb

It is dicult to deny a place in the Summary Tables for a state that six experiments claim to have seen. Nevertheless, we believe it reasonable to have some reservations about the existence of this state on the basis of the present evidence. Mass m = 1539:2 1:6 MeV Full width ; = 0:90 0:30 MeV



NK      

I(J P ) = 0(?? )

(1540)+ DECAY MODES

I(J P ) = 0( 23 ;)

(1810) DECAY MODES p (MeV/c) 157

NK  (1385)  N K  (892)

Fraction (;i /;) 20{50 % 10{40 % seen 30{60 %

p (MeV/c) 537 501 357

y

72

Baryon Summary Table (1820) F05

 BARYONS (S = ; 1, I = 1)

I(J P ) = 0( 25 +)

Mass m = 1815 to 1825 ( 1820) MeV Full width ; = 70 to 90 ( 80) MeV pbeam = 1:06 GeV=c 4 2 = 16:5 mb (1820) DECAY MODES

NK  (1385) 

(1830) D05

Fraction (;i /;) 55{65 % 8{14 % 5{10 %

 + = uus,  0 = uds,  ; = dds p (MeV/c) 545 509 366

+

Mass m = 1189:37 0:07 MeV (S = 2.2) Mean life  = (0:8018 0:0026)  10;10 s c = 2:404 cm (  + ;   ; ) /   + = (; 0:6 1:2)  10;3 Magnetic moment ;= 2:458 0:010 N (S = 2.1)  ; ;  + ! n `+  /;  ; ! n `;  < 0:043 Decay parameters +0:017 p 0 0 = ; 0:980 ; 0:015 " 0 = (36 34) i] " 0 = 0:16 " 0 = (187 6) i] n + + = 0:068 0:013 " + = (167 20) (S = 1.1) i] " + = ; 0:97  i] " + = (; 73 +133 ; 10 ) p  = ; 0:76 0:08

I(J P ) = 0( 25 ;)

Mass m = 1810 to 1830 ( 1830) MeV Full width ; = 60 to 110 ( 95) MeV pbeam = 1:08 GeV=c 4 2 = 16:0 mb (1830) DECAY MODES

NK  (1385) 

(1890) P03

Fraction (;i /;) 3{10 % 35{75 % >15 %

p (MeV/c) 553 516 374

I(J P ) = 0( 23 +)

Mass m = 1850 to 1910 ( 1890) MeV Full width ; = 60 to 200 ( 100) MeV pbeam = 1:21 GeV=c 4 2 = 13:6 mb (1890) DECAY MODES

NK  (1385)  N K  (892)

(2100) G07

Fraction (;i /;) 20{35 % 3{10 % seen seen

p (MeV/c) 599 560 423 236

Mass m = 2090 to 2110 ( 2100) MeV Full width ; = 100 to 250 ( 200) MeV pbeam = 1:68 GeV=c 4 2 = 8:68 mb (2100) DECAY MODES

NK   K ! N K  (892)

(2110) F05

Fraction (;i /;) 25{35 % 5% <3 % <3 % <8 % 10{20 %

NK  ! (1385)  N K  (892)

p (MeV/c) 751 705 617 491 443 515

(2350) H09

I(J P ) = 0( 29 +)

Mass m = 2340 to 2370 ( 2350) MeV Full width ; = 100 to 250 ( 150) MeV pbeam = 2:29 GeV=c 4 2 = 5:85 mb (2350) DECAY MODES

NK 

Fraction (;i /;)

 12 %  10 %

S = Q (SQ) violating modes or S = 1 weak neutral current (S1) modes SQ < 5  10;6 SQ < 3 :0  10;5 S1 < 7  10;6

p (MeV/c) 915 867

90% 90%

224 202 225

I(J P ) = 1( 21 +)

 0 DECAY MODES

; p (MeV/c) 757 711 455 591 525

p Fraction (;i /;) Condence level (MeV/c) (51:57  0:30) % 189 (48:31  0:30) % 185 ( 1:23  0:05)  10;3 225 j] ( 4:5  0:5 )  10;4 185 ( 2:0  0:5 )  10;5 71

Mass m = 1192:642 0:024 MeV m  ; ; m  0 = 4:807 0:035 MeV (S = 1.1) m  0 ; m  = 76:959 0:023 MeV Mean life  = (7:4 0:7)  10;20 s c = 2:22  10;11 m Transition magnetic moment    = 1:61 0:08 N   e + e ;

I(J P ) = 0( 25 +)

Fraction (;i /;) 5{25 % 10{40 % seen seen 10{60 %

p n + e + e

0

Mass m = 2090 to 2140 ( 2110) MeV Full width ; = 150 to 250 ( 200) MeV pbeam = 1:70 GeV=c 4 2 = 8:53 mb (2110) DECAY MODES

 + DECAY MODES p 0 n +

ne + e n +  p e+ e;

I(J P ) = 0( 27 ;)

I(J P ) = 1( 21 +)

Fraction (;i /;) 100 % < 3% l] 5  10;3

p Condence level (MeV/c) 74 90% 74 74

I(J P ) = 1( 21 +) Mass m = 1197:449 0:030 MeV (S = 1.2) m  ; ; m  + = 8:08 0:08 MeV (S = 1.9) m  ; ; m  = 81:766 0:030 MeV (S = 1.2) Mean life  = (1:479 0:011)  10;10 s (S = 1.3) c = 4:434 cm Magnetic moment  = ; 1:160 0:025 N (S = 1.7)  ; charge radius = 0:78 0:10 fm

73

Baryon Summary Table  (1775) D15

Decay parameters n ; ; = ; 0:068 0:008 " ; = (10 15) i] " ; = 0:98 12 ) i] " ; = (249 +; 120 g A /gV = 0:340 0:017 f ] ne ;  e " f2 (0) f1 (0) = 0:97 0:14 " D = 0:11 0:10 g V /g A = 0:01 0:10 f ] (S = 1.5) e ;  e " g WM /g A = 2:4 1:7 f ]  ; DECAY MODES

n ; n ; ne ;  e n ;   e ;  e

 (1385) P13

Fraction (;i /;) (99:848  0:005) % j] ( 4:6  0:6 )  10;4 ( 1:017  0:034)  10;3 ( 4:5  0:4 )  10;4 ( 5:73  0:27 )  10;5

0:4 MeV 1:0 MeV ; (1385) mass m = 1387:2 0:5 MeV + (1385) full width ; = 35:8 0:8 MeV (1385)0 full width ; = 36 5 MeV (1385); full width ; = 39:4 2:1 MeV Below K N threshold

(1385) DECAY MODES

 

 (1660) P11

Mass m = 1770 to 1780 ( 1775) MeV Full width ; = 105 to 135 ( 120) MeV pbeam = 0:96 GeV=c 4 2 = 19:0 mb (1775) DECAY MODES

p (MeV/c) 193 193 230 210 79

I(J P ) = 1( 23 +)

(1385)+ mass m = 1382:8 (1385)0 mass m = 1383:7

NK  

 (1670) D13

(S = 2.0) (S = 1.4) (S = 2.2)

p (MeV/c) 208 129

I(J P ) = 1( 1 +) 2

Fraction (;i /;) 10{30 % seen seen

p (MeV/c) 405 440 387

NK  

 (1750) S11

NK   

NK   (1385)  (1520)  (1232)K N K  (892)

 (2030) F17

I(J P ) = 1( 21 ;)

Fraction (;i /;) 10{40 % seen <8 % 15{55 %

NK   K (1385)  (1520)  (1232)K N K  (892)

 (2250) p (MeV/c) 486 507 456 99

I(J P ) = 1( 25 +)

Fraction (;i /;) 5{15 % seen seen <5 %

p (MeV/c) 618 623 577 443

I(J P ) = 1( 23 ;)

Fraction (;i /;) <20 % seen seen seen seen seen seen

p (MeV/c) 637 640 595 463 355 410 322

I(J P ) = 1( 27 +)

Mass m = 2025 to 2040 ( 2030) MeV Full width ; = 150 to 200 ( 180) MeV pbeam = 1:52 GeV=c 4 2 = 9:93 mb (2030) DECAY MODES

Mass m = 1730 to 1800 ( 1750) MeV Full width ; = 60 to 160 ( 90) MeV pbeam = 0:91 GeV=c 4 2 = 20:7 mb (1750) DECAY MODES

(1940) DECAY MODES

2

p (MeV/c) 414 448 394

p (MeV/c) 508 525 475 327 201

Mass m = 1900 to 1950 ( 1940) MeV Full width ; = 150 to 300 ( 220) MeV pbeam = 1:32 GeV=c 4 2 = 12:1 mb

I(J P ) = 1( 3 ;)

Fraction (;i /;) 7{13 % 5{15 % 30{60 %

Fraction (;i /;) 37{43% 14{20% 2{5% 8{12% 17{23%

Mass m = 1900 to 1935 ( 1915) MeV Full width ; = 80 to 160 ( 120) MeV pbeam = 1:26 GeV=c 4 2 = 12:8 mb

 (1940) D13

(S = 1.7)

Mass m = 1665 to 1685 ( 1670) MeV Full width ; = 40 to 80 ( 60) MeV pbeam = 0:74 GeV=c 4 2 = 28:5 mb (1670) DECAY MODES

 (1915) F15

NK   (1385) 

Mass m = 1630 to 1690 ( 1660) MeV Full width ; = 40 to 200 ( 100) MeV pbeam = 0:72 GeV=c 4 2 = 29:9 mb (1660) DECAY MODES

NK   (1385)  (1520) 

(1915) DECAY MODES

Fraction (;i /;) 882 % 122 %

I(J P ) = 1( 25 ;)

Fraction (;i /;) 17{23 % 17{23 % 5{10 % <2 % 5{15 % 10{20 % 10{20 % <5 %

p (MeV/c) 702 700 657 422 532 430 498 439

I(J P ) = 1(?? )

Mass m = 2210 to 2280 ( 2250) MeV Full width ; = 60 to 150 ( 100) MeV pbeam = 2:04 GeV=c 4 2 = 6:76 mb (2250) DECAY MODES

NK  

Fraction (;i /;) <10 % seen seen

p (MeV/c) 851 842 803

74

Baryon Summary Table  BARYONS (S = ; 2, I = 1/2)  0 = uss,  ; = dss

0

I(J P ) = 21 ( 21 + ) P is not yet measured + is the quark model prediction. Mass m = 1314:83 0:20 MeV m  ; ; m  0 = 6:48 0:24 MeV Mean life  = (2:90 0:09)  10;10 s c = 8:71 cm Magnetic moment  = ; 1:250 0:014 N Decay parameters  0  = ; 0:411 0:022 (S = 2.1) "  = (21 12) i] " = 0:85  i] "  = (218 +12 ; 19 )   = ; 0 :4 0 :4 0  = ; 0:63 0:09 :22  + e ;  e g1 (0)/f1 (0) = 1:32 +0 ; 0:18  + e ;  e f2 (0)/f1 (0) = 2:0 1:3

 0 DECAY MODES  0

 0  + e; e  + ;    ; e + e  ;  +  p ; p e; e p ;  

;

(1530) DECAY MODES

 

 (1690)

112 49 299 323 309

P is not yet measured + is the quark model prediction. Mass m = 1321:31 0:13 MeV Mean life  = (1:639 0:015)  10;10 s c = 4:91 cm Magnetic moment  = ; 0:6507 0:0025 N Decay parameters  ;  = ; 0:458 0:012 (S = 1.8) ( ; ); () ; ( + )+ ()]/( ; ); () + ( + )+ ()] = 0:012 0:014 "  = ( ; 0 :4 2:3) i] " = 0:89 "  = (179 4) i] g A/g V = ; 0:25 0:05 f ] e ;  e

 ; ; e ;  e  ;    0 e; e  0 ;    0 e; e

< < < < <

1 :5 4 4 4 4

%

 10;4  10;4  10;4  10;4

90% 90% 90% 90% 90% 90% 90%

303 327 313 223 304 250 272

I(J P ) = 21 ( 23 + )

(1530)0 mass m = 1531:80 0:32 MeV (S = 1.3) (1530); mass m = 1535:0 0:6 MeV (1530)0 full width ; = 9:1 0:5 MeV :7 (1530); full width ; = 9:9 +1 ; 1:9 MeV

I(J P ) = 21 ( 21 + )

 ; DECAY MODES

S2 S2 S2 S2 L

 (1530) P13

Scale factor/ p Fraction (;i /;) Condence level (MeV/c) (99:522  0:032) % S=1.7 135 ( 1:18  0:30 )  10;3 S=2.0 184 ( 3:33  0:10 )  10;3 117 ( 2:7  0:4 )  10;4 119 < 1 :1  10;3 CL=90% 64

S = Q (SQ) violating modes or S = 2 forbidden (S2) modes SQ < 9  10;4 CL=90% SQ < 9  10;4 CL=90% S2 < 4  10;5 CL=90% S2 < 1 :3  10;3 S2 < 1 :3  10;3

S = 2 forbidden (S2) modes S2 < 1 :9  10;5 S2 < 3 :2  10;3

n ; ne ;  e n ;   p ; ; p ; e ;  e p  ; ;   p ; ;

p Fraction (;i /;) Condence level (MeV/c) (99:887  0:035) % 139 ( 1:27  0:23 )  10;4 118 ( 5:63  0:31 )  10;4 190 :5 ;4 ( 3:5 +3 163 ; 2:2 )  10 ( 8:7  1:7 )  10;5 122 < 8  10;4 90% 70 < 2 :3  10;3 90% 6

Fraction (;i /;) 100 % <4 %

p Condence level (MeV/c) 158 90% 202

I(J P ) = 21 (?? )

Mass m = 1690 10 MeV k] Full width ; < 30 MeV (1690) DECAY MODES

K K   ; + ;

 (1820) D13

Fraction (;i /;) seen seen seen possibly seen

p (MeV/c) 240 70 311 214

I(J P ) = 21 ( 23 ; )

Mass m = 1823 5 MeV k] k] Full width ; = 24 +15 ; 10 MeV (1820) DECAY MODES

K K  (1530) 

 (1950)

Fraction (;i /;) large small small small

p (MeV/c) 402 324 421 237

I(J P ) = 21 (?? )

Mass m = 1950 15 MeV k] Full width ; = 60 20 MeV k] (1950) DECAY MODES

K K 

 (2030)

Fraction (;i /;) seen possibly seen seen

p (MeV/c) 522 460 519

I(J P ) = 21 (  25 ? )

Mass m = 2025 5 MeV k] k] Full width ; = 20 +15 ; 5 MeV (2030) DECAY MODES

K K  (1530)  K  K

Fraction (;i /;)  20 %  80 % small small small small

p (MeV/c) 585 529 574 416 499 428

75

Baryon Summary Table Hadronic modes with a p: S = ; 1 nal states ( 2:3  0:6 ) % p K0 p K ; + m] ( 5:0  1:3 ) % n] ( 1:6  0:5 ) % p K  (892)0 (1232)++ K ; ( 8:6  3:0 )  10;3 + (1520)  n] ( 5:9  2:1 )  10;3 ; + p K  nonresonant ( 2 : 8  0 :8 ) % ( 3:3  1:0 ) % p K 0 0 0 ( 1:2  0:4 ) % pK 0 + ; ( 2:6  0:7 ) % pK   p K ; + 0 ( 3:4  1:0 ) %  ; + p K (892)  n] ( 1:1  0:5 ) % ; + 0 p (K  )nonresonant  ( 3 : 6  1 :2 ) % seen (1232)K  (892) p K ; + + ; ( 1:1  0:8 )  10;3 p K ; + 0 0 ( 8  4 )  10;3

 BARYONS (S = ; 3, I = 0)  ; = sss

;

I(J P ) = 0( 23 +)

J P is not yet measured 32 + is the quark model prediction. Mass m = 1672:45 0:29 MeV (m  ; ; m  + ) / m  ; = (; 1 8)  10;5 Mean life  = (0:821 0:011)  10;10 s c = 2:461 cm (  ; ;   + ) /   ; = ; 0:002 0:040 Magnetic moment  = ; 2:02 0:05 N Decay parameters K ;  = ; 0:026 0:023 1 (K ; )+(K + )] = ; 0:004 0:040 2 0 ;    = 0:09 0:14  ; 0  = 0:05 0:21

p Fraction (;i /;) Condence level (MeV/c) (67:8  0:7) % 211 (23:6  0:7) % 294 ( 8:6  0:4) % 290 :4 ;4 ( 4:3 +3 190 ; 1:3 )  10 :1 )  10;4 ( 6:4 +5 17 ; 2 :0 ( 5:6  2:8)  10;3 319 < 4 :6  10;4 90% 314

 ; DECAY MODES

K ;  0 ;  ; 0  ; + ; (1530)0 ;  0 e; e ;

S = 2 forbidden (S2) modes S2 < 1 :9  10;4

 ;

 (2250);

90%

449

I(J P ) = 0(?? )

Mass m = 2252 9 MeV Full width ; = 55 18 MeV

(2250); DECAY MODES  ; + K ; (1530)0 K ;

Fraction (;i /;) seen seen

p (MeV/c) 532 437

CHARMED BARYONS (C = +1)

+ 0 +c = u d c,  ++ c = u u c,  c = u d c,  c = d d c,  +c = u s c,  0c = d s c,  0c = s s c

+c

I(J P ) = 0( 21 +) J is not well measured 12 is the quark-model prediction. Mass m = 2284:9 0:6 MeV Mean life  = (200 6)  10;15 s (S = 1.6) c = 59:9 m Decay asymmetry parameters  +  = ; 0:98 0:19  + 0  = ; 0:45 0:32 +0 :11 +  ` `  = ; 0:82 ; 0:07

Nearly all branching fractions of the + c are measured relative to the p K ; + mode, but there are no model-independent measurements of this branching fraction. We explain how we arrive at our value of B(+ c ! p K ; + ) in a Note at the beginning of the branching-ratio measurements in the Listings. When this branching fraction is eventually well determined, all the other branching fractions will slide up or down proportionally as the true value diers from the value we use here. Scale factor/ p + Fraction (;i /;) Condence level (MeV/c) c DECAY MODES

Hadronic modes with a p: S = 0 nal states p + ; ( 3:5  2:0 )  10;3 p f0 (980) n] ( 2:8  1:9 )  10;3 p + + ; ; ( 1:8  1:2 )  10;3 pK+K; ( 7:7  3:5 )  10;4 p n] ( 8:2  2:7 )  10;4 + ; p K K non- ( 3:5  1:7 )  10;4 Hadronic modes with a hyperon: S = ; 1 nal states  + ( 9:0  2:8 )  10;3  + 0 ( 3:6  1:3 ) % + 

< 5 % CL=95% + + ;    ( 3:3  1:0 ) % + + ; 0      total ( 1 : 8  0 :8 ) %  + ( 1:8  0:6 ) % + (1385) n] ( 8:5  3:3 )  10;3 +  ! n] ( 1:2  0:5 ) %  + + ; 0 , no or ! < 7  10;3 CL=90% ( 6:0  2:1 )  10;3 K + K 0 ( 1:6  0:8 )  10;3 (1690)0 K + , (1690)0 ! K 0 0 +   ( 9:9  3:2 )  10;3  + 0 ( 1:00  0:34) % + ( 5:5  2:3 )  10;3 + + ;    ( 3:6  1:0 ) %  + 0 < 1 :4 % CL=95%  ; + + ( 1:9  0:8 ) %  0 + 0 ( 1:8  0:8 ) %  0 + + ; ( 1:1  0:4 ) %  + + ; 0 | +! n] ( 2:7  1:0 ) % + + ;  K K ( 2:8  0:8 )  10;3 + n] ( 3:2  1:0 )  10;3 0 + 0 ( 8:2  3:1 )  10;4 (1690) K , (1690) ! +K;   + K + K ; nonresonant < 7  10;4 CL=90% 0K+ ( 3:9  1:4 )  10;3  ; K + + ( 4:9  1:7 )  10;3 (1530)0 K + n] ( 2:6  1:0 )  10;3 Hadronic modes with a hyperon: S = 0 nal states K + ( 6:7  2:5 )  10;4 0K+ ( 5:6  2:4 )  10;4  + K + ; ( 1:7  0:7 )  10;3 +  0  K (892) n] ( 2:8  1:1 )  10;3 ; + +  K  < 1 :0  10;3 CL=90% Semileptonic modes  `+  ` o] ( 2:0  0:6 ) % e + e ( 2:1  0:6 ) % +    ( 2:0  0:7 ) % Inclusive modes e + anything ( 4:5  1:7 ) % p e + anything ( 1:8  0:9 ) % p anything (50  16 ) % p anything (no ) (12  19 ) % n anything (50  16 ) % n anything (no ) (29  17 ) %  anything (35  11 ) % S=1.4   anything p] (10  5 ) % 3prongs (24  8 ) %

872 822 684 709 626 822 822 566 753 758 579 758 417 670 676 926 621 851 615 589 615 863 843 634 806 756 689 569 515 756 441 286 824 826 712 803 573 798 802 762 766 568 346 292 286 346 652 564 471 780 734 668 468 662 870 870 866

{ { { { { { { { {

76

Baryon Summary Table p + ;  ; + +

C = 1 weak neutral current (C1) modes, or Lepton number (L) violating modes C1 < 3 :4  10;4 CL=90% L < 7 :0  10;4 CL=90%

c (2593)+

936 811

c (2520)

I(J P ) = 1( 23 +) 3 + P J has not been measured 2 is the quark-model prediction. c (2520)++mass m = 2519:4 1:5 MeV c (2520)+ mass m = 2515:9 2:4 MeV c (2520)0 mass m = 2517:5 1:4 MeV m c (2520)++ ; m + = 234:5 1:4 MeV c m c (2520)+ ; m + = 231:0 2:3 MeV c m c (2520)0 ; m + = 232:6 1:3 MeV c m c (2520)++ ; m c (2520)0 = 1:9 1:7 MeV ++ c (2520) full width ; = 18 5 MeV c (2520)+ full width ; < 17 MeV, CL = 90% 0 c (2520) full width ; = 13 5 MeV

I(J P ) = 0( 21 ;)

The spin-parity follows from the fact that c (2455)  decays, with little available phase space, are dominant. This assumes that J P = 1/2+ for the c (2455). Mass m = 2593:9 0:8 MeV m ; m + = 308:9 0:6 MeV (S = 1.1) c :0 Full width ; = 3:6 +2 ; 1:3 MeV + c   and its submode c (2455)  | the latter just barely | are the only strong decays allowed to an excited + c having this mass and the submode seems to dominate.

c (2593)+ DECAY MODES +c + ; c (2455)++ ; c (2455)0 + +c + ; 3-body +c 0 +c

c (2625)+

Fraction (;i /;)

+ c  is the only strong decay allowed to a c having this mass.

p (MeV/c)

q]  67 % 24  7 % 24  7 % 18  10 % r] not seen not seen

124 28 28 124 261 291

I(J P ) = 0( 23 ;)

c (2455)

p Condence level (MeV/c)

q]  67% <5 <5 large r] not seen not seen

184 102 102 184 293 319

90% 90%

I(J P ) = 1( 21 +)

J P has not been measured 12 + is the quark-model prediction. c (2455)++mass m = 2452:5 0:6 MeV c (2455)+ mass m = 2451:3 0:7 MeV c (2455)0 mass m = 2452:2 0:6 MeV m  ++ ; m + = 167:58 0:12 MeV c c m  + ; m + = 166:4 0:4 MeV c c m  0 ; m + = 167:32 0:12 MeV c c m  ++ ; m  0 = 0:26 0:11 MeV c c m  + ; m  0 = ; 0:9 0:4 MeV c c ++ c (2455) full width ; = 2:23 0:30 MeV c (2455)+ full width ; < 4:6 MeV, CL = 90% c (2455)0 full width ; = 2:2 0:4 MeV (S = 1.4) Fraction (;i /;)

 100 %

p (MeV/c)

 100 %

180

I(J P ) = 21 ( 21 + ) J P has not been measured 12 + is the quark-model prediction. Mass m = 2466:3 1:4 MeV Mean life  = (442 26)  10;15 s (S = 1.3) c = 132 m Fraction (;i /;)

K 0 + (1385)+ K 0 K ; + + K  (892)0 + (1385)+ K ; +  + K ; +  + K  (892)0  0 K ; + +  0 +  ; + + (1530)0 +  0 + 0  0 + + ;  0 e + e  ; K + +

p Condence level (MeV/c)

Cabibbo-favored (S = ; 2) decays | n,s] 1:0  0:5 s] 0:34  0:12 n,s] <0:2 n,s] <0:3 s] 0:94  0:11 n,s] 0:81  0:15 s] 0:29  0:16 s] 0:55  0:16 s] DEFINED AS 1 n,s] <0:1 s] 2:34  0:68 s] 1:74  0:50 :7 s] 2:3 +0 ; 0 :9 s] 0:07  0:04

Cabibbo-suppressed decays p K ; + s] 0:21  0:03  0 n,s] 0:12  0:02 p K (892) + + ;  K K s] 0:15  0:07 + n,s] <0:11 0 + (1690) K s] <0:05 B((1690)0 !  + K ; )

+ c  is the only strong decay allowed to a c having this mass.

c (2455) DECAY MODES +c 

Fraction (;i /;)

No absolute branching fractions have been measured. The following are branching ratios relative to  ; + + .

+ c   and its submode (2455)  are the only strong decays allowed to an excited + c having this mass. Fraction (;i /;)

 +c

+ c DECAY MODES

J P has not been measured 32 ; is the quark-model prediction. Mass m = 2626:6 0:8 MeV (S = 1.2) m ; m + = 341:7 0:6 MeV (S = 1.6) c Full width ; < 1:9 MeV, CL = 90%

c (2625)+ DECAY MODES +c + ; c (2455)++ ; c (2455)0 + +c + ; 3-body +c 0 +c

c (2520) DECAY MODES +c 

p (MeV/c) 94

90% 90%

90%

90% 90%

851 745 785 607 677 809 657 734 876 850 748 855 817 883 397 943 827 578 547 501

77

Baryon Summary Table  0c

I(J P ) = 21 ( 21 ; ) 1 ; P J has not been measured 2 is the quark-model prediction. c (2790)+ mass = 2790:0 3:5 MeV c (2790)0 mass = 2790 4 MeV m c (2790)+ ; m  0 = 318:2 3:2 MeV c m c (2790)0 ; m  + = 324:0 3:3 MeV c + c (2790) width < 15 MeV, CL = 90% c (2790)0 width < 12 MeV, CL = 90%

J P has not been measured 12 + is the quark-model prediction. Mass m = 2471:8 1:4 MeV m  0 ; m  + = 5:5 1:8 MeV c c ;15 Mean life  = (112 +13 ; 10 )  10 s c = 33:6 m Decay asymmetry parameters  ; +  = ; 0 :6 0 :4

 0c DECAY MODES K 0 K 0 + ; K ; + + ;  ; +  ; + + ; p K ; K  (892)0 ; K +  ; e + e  ; `+ anything

 0c+

c (2790)

I(J P ) = 21 ( 21 + )

Fraction (;i /;) seen seen seen seen seen seen seen seen seen

p (MeV/c) 907 788 704 876 817 414 523 883

 0c 

c

The c   modes are consistent with being entirely via c (2645) .

c (2815) DECAY MODES  +c + ;  0c + ;

c

 0c+ DECAY MODES  +c

Fraction (;i /;)

p (MeV/c)

seen

106

I(J P ) = 21 ( 21 + ) J P has not been measured 12 + is the quark-model prediction. Mass m = 2578:8 3:2 MeV m  00 ; m  0 = 107:0 2:9 MeV c

Fraction (;i /;)

p (MeV/c)

seen

105

c (2645)

I(J P ) = 21 ( 23 + ) 3 J P has not been measured 2 + is the quark-model prediction. c (2645)+ mass m = 2647:4 2:0 MeV (S = 1.2) c (2645)0 mass m = 2644:5 1:8 MeV m c (2645)+ ; m  0 = 175:6 1:4 MeV (S = 1.7) c m c (2645)0 ; m  + = 178:2 1:1 MeV c + c (2645) full width ; < 3:1 MeV, CL = 90% c (2645)0 full width ; < 5:5 MeV, CL = 90% c  is the only strong decay allowed to a c resonance having this mass.

c (2645) DECAY MODES  0c +  +c ;

Fraction (;i /;) seen seen

 0c

Fraction (;i /;)

p (MeV/c)

seen seen

196 187

I(J P ) = 0( 21 +) J P has not been measured 12 + is the quark-model prediction. Mass m = 2697:5 2:6 MeV (S = 1.2) Mean life  = (69 12)  10;15 s c = 21 m No absolute branching fractions have been measured.

c

The  0c0 ;  0c mass dierence is too small for any strong decay to occur.  0c0 DECAY MODES  0c

p (MeV/c) 162

I(J P ) = 21 ( 23 ; ) 3 ; P J has not been measured 2 is the quark-model prediction. c (2815)+ mass m = 2814:9 1:8 MeV c (2815)0 mass m = 2819:0 2:5 MeV m c (2815)+ ; m  + = 348:6 1:2 MeV c m c (2815)0 ; m  0 = 347:2 2:1 MeV c c (2815)+ full width ; < 3:5 MeV, CL = 90% c (2815)0 full width ; < 6:5 MeV, CL = 90%

I(J P ) = 21 ( 21 + ) J P has not been measured 12 + is the quark-model prediction. Mass m = 2574:1 3:3 MeV m  0+ ; m  + = 107:8 3:0 MeV

Fraction (;i /;) seen

c (2815)

{

The  0c+ { + c mass dierence is too small for any strong decay to occur.

 0c0

c (2790) DECAY MODES

p (MeV/c) 98 107

 0c DECAY MODES  + K ; K ; +  0 K ; +  ; K ; + +  ; e + e  ; +  ; + 0  ; ; + +

Fraction (;i /;) seen seen seen seen seen seen seen

p (MeV/c) 691 903 832 830 822 798 754

78

Baryon Summary Table NOTES

BOTTOM BARYONS (B = ; 1) 0b = u d b,  0b = u s b,  ;b = d s b

0b

I(J P ) = 0( 21 +)

I(J P ) not yet measured 0( 12 + ) is the quark model prediction. Mass m = 5624 9 MeV (S = 1.8) Mean life  = (1:229 0:080)  10;12 s c = 368 m These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy p p), branching ratios, and detection eciencies. They scale with the LEP b-baryon production fraction B(b ! b -baryon) and are evaluated for our value B(b ! b -baryon) = (9:9  1:7)%. The branching fractions B(b -baryon !  `;  ` anything) and B(0b ! ; + c `  ` anything) are not pure measurements because the underlying measured products of these with B(b ! b -baryon) were used to determine B(b ! b -baryon), as described in the note \Production and Decay of b-Flavored Hadrons." 0b DECAY MODES

J =(1S) +c ; +c a1 (1260); +c `;  ` anything p ; pK; 

Fraction (;i /;)

(4:7  2:8)  10;4 seen seen t] (9:2  2:1) % < 5 :0  10;5 < 5 :0  10;5 < 1:3  10;3

p Condence level (MeV/c) 1744 2345 2156

{

90% 90% 90%

2732 2711 2701

b-baryon ADMIXTURE (b , b , b , b ) Mean life  = (1:208

0:051)  10;12 s

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy p p), branching ratios, and detection eciencies. They scale with the LEP b-baryon production fraction B(b ! b -baryon) and are evaluated for our value B(b ! b -baryon) = (9:9  1:7)%. The branching fractions B(b -baryon !  `;  ` anything) and B(0b ! ; + c `  ` anything) are not pure measurements because the underlying measured products of these with B(b ! b -baryon) were used to determine B(b ! b -baryon), as described in the note \Production and Decay of b-Flavored Hadrons." b-baryon ADMIXTURE DECAY MODES (b ,b ,b ,b ) Fraction (;i /;) ; 2 :1 p   anything ( 4 :9 + ; 1 :8 ) % ( 4:8  1:1) % p `  ` anything p anything (60  20 ) % ( 3:2  0:6) %  `;  ` anything (33  7 ) % /anything ( 5:6  1:5)  10;3  ; `;  ` anything

p (MeV/c)

{ { { { { {

This Summary Table only includes established baryons. The Particle Listings include evidence for other baryons. The masses, widths, and branching fractions for the resonances in this Table are Breit-Wigner parameters, but pole positions are also given for most of the N and resonances. For most of the resonances, the parameters come from various partial-wave analyses of more or less the same sets of data, and it is not appropriate to treat the results of the analyses as independent or to average them together. Furthermore, the systematic errors on the results are not well understood. Thus, we usually only give ranges for the parameters. We then also give a best guess for the mass (as part of the name of the resonance) and for the width. The Note on N and Resonances and the Note on  and  Resonances in the Particle Listings review the partial-wave analyses. When a quantity has \(S = : : :)" to its right, the error on the quantity has p been enlarged by the \scale factor" S, dened as S = 2 =(N ; 1), where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1:25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction. A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame. For any resonance, the nominal mass is used in calculating p. A dagger (\y") in this column indicates that the mode is forbidden when the nominal masses of resonances are used, but is in fact allowed due to the nonzero widths of the resonances. a] The masses of the p and n are most precisely known in u (unied atomic mass units). The conversion factor to MeV, 1 u = 931:494043 0:000080 MeV, is less well known than are the masses in u. b] These two results are not independent, and both use the more precise measurement of qp /m p /(qp /m p ). c] The limit is from neutrality-of-matter experiments it assumes qn = qp + qe . See also the charge of the neutron. d] The rst limit is for p ! anything or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray p's is  p > 107 yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives ; ) > 7  105 yr.  p /B(p ! e e] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The rst limit here is from reactor experiments with free neutrons. f ] The parameters g A , g V , and g WM for semileptonic modes are dened by B f  (g V + g A 5 ) + i(g WM /m Bi )   q ]Bi , and AV is dened by g A /g V = g A /g V ei AV . See the \Note on Baryon Decay Parameters" in the neutron Particle Listings. g] Time-reversal invariance requires this to be 0 or 180. h] This limit is for energies between 35 and 100 keV. i] The decay parameters and  are calculated from  and  using p p 1;2 cos , tan = ; 1 1;2 sin . = See the \Note on Baryon Decay Parameters" in the neutron Particle Listings. j] See the Listings for the pion momentum range used in this measurement. k] The error given here is only an educated guess. It is larger than the error on the weighted average of the published values. l] A theoretical value using QED. m] See the note on \+c Branching Fractions" in the +c Particle Listings. n] This branching fraction includes all the decay modes of the nal-state resonance. o] An ` indicates an e or a  mode, not a sum over these modes. p] The value is for the sum of the charge states or particle/antiparticle states indicated. q] Assuming isospin conservation, so that the other third is +c 0 0 . r] A test that the isospin is indeed 0, so that the particle is indeed a +c . s] No absolute branching fractions have been measured. The following are branching ratios relative to  ; + + . t] Not a pure measurement. See note at head of 0b Decay Modes.

79

Searches Summary Table SEARCHES FOR MONOPOLES, SUPERSYMMETRY, TECHNICOLOR, COMPOSITENESS, EXTRA DIMENSIONS, etc.

Technicolor

Magnetic Monopole Searches Isolated supermassive monopole candidate events have not been conrmed. The most sensitive experiments obtain negative results. Best cosmic-ray supermassive monopole ux limit: < 1:0 10;15 cm; 2 sr; 1 s; 1 for 1:1 10;4 <  < 0:1

Supersymmetric Particle Searches Limits are based on the Minimal Supersymmetric Standard Model. Assumptions include: 1) e01 (or e) is lightest supersymmetric particle 2) R-parity is conserved 3) With the exception of et and eb, all scalar quarks are assumed to be degenerate in mass and m qeR = m qeL . 4) Limits for sleptons refer to the e`R states. See the Particle Listings for a Note giving details of supersymmetry. e0i | neutralinos (mixtures of e, Ze 0 , and He 0i ) Mass m e0 > 46 GeV, CL = 95% all tan , all m0 , all m0] 1 Mass m e0 > 62:4 GeV, CL = 95% 2 1 99:9 GeV, CL = 95% 3 1
1

f  and H e ) ei | charginos (mixtures of W i Mass m e > 94 GeV, CL = 95% 1 tan < 40, m e ; m e0 > 3 GeV, all m0] 1 e|

ge | gluino The limits summarised here refer to the high-mass region (m ge & 5 GeV), and include the eects of cascade decays, evaluated assuming a xed value of the parameters  and tan . The limits are weakly sensitive to these parameters over much of parameter space. Limits assume GUT relations between gaugino masses and the gauge coupling, Mass m > 195 GeV, CL = 95% any m qe ] Mass m > 300 GeV, CL = 95% m qe = m ge ]

1

scalar electron (selectron) Mass m > 73 GeV, CL = 95% all m eeR {m e0 ]

e | scalar muon (smuon) Mass m > 94 GeV, CL = 95% 1  tan  40, m eR {m e0 > 10 GeV] 1 e | scalar tau (stau) Mass m > 81:9 GeV, CL = 95% m eR ; m e0 >15 GeV, all  ] 1

1

qe | scalar quark (squark) These limits include the eects of cascade decays, evaluated assuming a xed value of the parameters  and tan . The limits are weakly sensitive to these parameters over much of parameter space. Limits assume GUT relations between gaugino masses and the gauge coupling. Mass m > 250 GeV, CL = 95% tan = 2,  <0, A = 0] eb | scalar bottom (sbottom) Mass m > 89 GeV, CL = 95% m be1 ; m e0 >8 GeV, all b ] 1

et |

scalar top (stop) Mass m > 95:7 GeV, CL = 95% et ! c e01 , all t , met ; m e0 >10 GeV] 1

Searches for a color-octet techni- constrain its mass to be greater than 260 to 480 GeV, depending on allowed decay channels. Similar bounds exist on the color-octet techni-!.

Quark and Lepton Compositeness, Searches for Scale Limits  for Contact Interactions (the lowest dimensional interactions with four fermions) If the Lagrangian has the form

 2g 22 L  L L   L

(with g 2 /4 set equal to 1), then we dene   LL . For the full denitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full Review and the original literature. +LL (e e e e) > 8:3 TeV, CL = 95% ;LL (e e e e) > 10:3 TeV, CL = 95% +LL (e e ) > 8:5 TeV, CL = 95% ;LL (e e ) > 6:3 TeV, CL = 95% +LL (e e   ) > 5:4 TeV, CL = 95% ;LL (e e   ) > 6:5 TeV, CL = 95% +LL (````) > 9:0 TeV, CL = 95% ;LL (````) > 7:8 TeV, CL = 95% +LL (e e u u) > 23:3 TeV, CL = 95% ;LL (e e u u) > 12:5 TeV, CL = 95% +LL (e e d d) > 11:1 TeV, CL = 95% ;LL (e e d d) > 26:4 TeV, CL = 95% +LL (e e c c) > 1:0 TeV, CL = 95% ;LL (e e c c) > 2:1 TeV, CL = 95% +LL (e e bb) > 5:6 TeV, CL = 95% ;LL (e e bb) > 4:9 TeV, CL = 95% +LL ( q q) > 2:9 TeV, CL = 95% ;LL ( q q) > 4:2 TeV, CL = 95% (` ` ) > 3:10 TeV, CL = 90% (e  q q) > 2:81 TeV, CL = 95% +LL (q q q q) > 2:7 TeV, CL = 95% ;LL (q q q q) > 2:4 TeV, CL = 95% +LL (  q q) > 5:0 TeV, CL = 95% ;LL (  q q) > 5:4 TeV, CL = 95%

80

Searches Summary Table Excited Leptons The limits from `+ `; do not depend on  (where  is the `` transition coupling). The -dependent limits assume chiral coupling. e  | excited electron Mass m > 103:2 GeV, CL = 95% (from e  e  ) Mass m > 255 GeV, CL = 95% (from e e  ) Mass m > 310 GeV, CL = 95% (if  = 1)  | excited muon Mass m > 103:2 GeV, CL = 95% (from   ) Mass m > 190 GeV, CL = 95% (from  )   | excited tau Mass m > 103:2 GeV, CL = 95% (from     ) Mass m > 185 GeV, CL = 95% (from    )   | excited neutrino Mass m > 102:6 GeV, CL = 95% (from     ) Mass m > 190 GeV, CL = 95% (from    ) q  | excited quark Mass m > 45:6 GeV, CL = 95% (from q  q  ) Mass m > 570, none 580{760 GeV, CL = 95% (from q  X) Color Sextet and Octet Particles Color Sextet Quarks (q6 ) Mass m > 84 GeV, CL = 95% (Stable q6 ) Color Octet Charged Leptons (`8 ) Mass m > 86 GeV, CL = 95% (Stable `8 ) Color Octet Neutrinos (8 ) Mass m > 110 GeV, CL = 90% (8 !  g)

Extra Dimensions Please refer to the Extra Dimensions section of the full Review for a discussion of the model-dependence of these bounds, and further constraints. Constraints on the fundamental gravity scale MH > 1:1 TeV, CL = 95% (dim-8 operators p p ! e + e ; ,   ) MD > 1:1 TeV, CL = 95% (e + e ; ! G  2-at dimensions) MD > 3{1000 TeV (astrophys. and cosmology 2-at dimensions limits depend on technique and assumptions) Constraints on the radius of the extra dimensions, for the case of two-at dimensions of equal radii r < 90{660 nm (astrophysics limits depend on technique and assumptions) r < 0:22 mm, CL = 95% (direct tests of Newton's law cited in Extra Dimensions review)

81

TESTS OF CONSERVATION LAWS

Updated February 2004 by L. Wolfenstein and T.G. Trippe.

In keeping with the current interest in tests of conservation laws, we collect together a Table of experimental limits on all weak and electromagnetic decays, mass dierences, and moments, and on a few reactions, whose observation would violate conservation laws. The Table is given only in the full Review of Particle Physics, not in the Particle Physics Booklet. For the benet of Booklet readers, we include the best limits from the Table in the following text. Limits in this text are for CL=90% unless otherwise specied. The Table is in two parts: \Discrete Space-Time Symmetries," i.e., C , P , T , CP , and CPT  and \Number Conservation Laws," i.e., lepton, baryon, hadronic avor, and charge conservation. The references for these data can be found in the the Particle Listings in the Review. A discussion of these tests follows.

CPT INVARIANCE

General principles of relativistic eld theory require invariance under the combined transformation CPT . The simplest tests of CPT invariance are the equality of the masses and lifetimes of a particle and its antiparticle. The best test comes from the limit on the mass dierence between K 0 and K 0. Any such dierence contributes to the CP -violating parameter . Assuming CPT invariance,  , the phase of should be very close to 44 . (See the review \CP Violation in KL decay" in this edition.) In contrast, if the entire source of CP violation in K 0 decays were a K 0 ; K 0 mass dierence,  would be 44 + 90 . Assuming that there is no other source of CPT violation than this mass dierence, it is possible to deduce that1] 2(mKL0 ; mKS0 ) jj ( 32 +; + 31 00 ; SW )  sin SW where SW = (43:51  0:05) , the superweak angle. Using our best values of the CP -violation parameters, we get j(mK 0 ; mK 0 )=mK 0 j  10;18 at CL=95%. Limits can also be placed on specic CPT -violating decay amplitudes. Given the small value of (1 ;j00=+;j), the value of 00 ; +; provides a measure of CPT violation in KL0 ! 2 decay. Results from CERN1] and Fermilab2] indicate no CPT -violating eect.

m K 0 ; mK 0 

CP AND T INVARIANCE Given CPT invariance, CP violation and T violation

are equivalent. The original evidence for CP violation came from the measurement of j+;j = jA(KL0 ! +;)=A(KS0 ! +;)j = (2:288  0:014)  10;3. This could be explained in terms of K 0{K 0 mixing, which also leads to the asymmetry ;(KL0 ! ;e+ );;(KL0 ! +e; )]=sum] = (0:3330:014)%. Evidence for CP violation in the kaon decay amplitide comes from the measurement of (1 ; j00 =+;j)=3 = Re( 0= ) = (1:67  0:26)  10;3. In the Standard Model much larger CP violating eects are expected. The rst of these, which is associated with B {B mixing, is the parameter sin(2 ) now measured quite accurately to be 0:731  0:056. A number of

Tests of Conservation Laws

other CP -violating observables are being measured in B decays and preliminary results are available. Direct tests of T violation are much more dicult a measurement by CPLEAR of the dierence between the oscillation probabilities of K 0 to K 0 and K 0 to K 0 is related to T violation 3]. Other searches for CP or T violation involve eects that are expected to be unobservable in the Standard Model. The most sensitive are probably the searches for an electric dipole moment of the neutron, measured to be < 6  10;26 e cm, and the electron (0:07  0:07)  10;26 e cm. A nonzero value requires both P and T violation.

CONSERVATION OF LEPTON NUMBERS

Present experimental evidence and the standard electroweak theory are consistent with the absolute conservation of three separate lepton numbers: electron number Le, muon number L, and tau number L , except for the eect of neutrino mixing associated with neutrino masses. Searches for violations are of the following types: a) L = 2 for one type of charged lepton. The best limit comes from the search for neutrinoless double beta decay (Z A) ! (Z + 2 A) + e; + e;. The best laboratory limit is t1=2 > 1:9  1025 yr (CL=90%) for 76 Ge.

b) Conversion of one charged-lepton type to another.

For purely leptonic processes, the best limits are on ! e and ! 3e, measured as ;( ! e )=;( !all) < 1:2  10;11 and ;( ! 3e)=;( ! all) < 1:0  10;12. For semileptonic processes, the best limit comes from the coherent conversion process in a muonic atom, ;+ (Z A) ! e; + (Z A), measured as ;( ;Ti ! e;Ti)=;( ;Ti ! all) < 4  10;12. Of special interest is the case in which the hadronic avor also changes, as in KL ! e and K + ! +e; +, measured as ;(KL ! e )=;(KL ! all) < 4:7  10;12 and ;(K + ! +e; +)=;(K + ! all) < 2:8  10;11. Limits on the conversion of into e or are found in decay and are much less stringent than those for ! e conversion, e.g., ;( ! )=;( ! all) < 1:1  10;6 and ;( ! e )=;( ! all) < 2:7  10;6.

c) Conversion of one type of charged lepton into another type of charged antilepton. The case most studied

is ; + (Z A) ! e+ + (Z ; 2 A), the strongest limit being ;( ;Ti ! e+ Ca)=;( ;Ti ! all) < 3:6  10;11. d) Neutrino oscillations. If neutrinos have mass, then it is expected even in the standard electroweak theory that the lepton numbers are not separately conserved, as a consequence of lepton mixing analogous to Cabibbo quark mixing. However, if the only source of lepton-number violation is the mixing of low-mass neutrinos then processes such as ! e are expected to have extremely small unobservable probabilities. For small neutrino masses, the lepton-number violation would be observed rst in neutrino oscillations, which have been the subject of extensive experimental searches. Strong evidence for neutrino mixing has come from atmospheric and solar neutrinos. The SNO experiment has detected the total ux of neutrinos from the sun measured via neutral current interactions and found it

82

Tests of Conservation Laws greater than the ux of e. This conrms previous indications of a decit of e and can be explained by oscillations with :2 ;5 eV2 . Evidence for such oscillations (m2 ) = (7:1+1 ;0:6 )  10 for reactor  has been found by the KAMLAND detector. In addition, underground detectors observing neutrinos produced by cosmic rays in the atmosphere have found a factor of 2 deciency of upward going  compared to downward. This provides compelling evidence for  disappearance, for which the most probable explanation is  !  oscillations with nearly maximal mixing and (m2 ) of the order 0.0013{0.0030 eV2 .

CONSERVATION OF HADRONIC FLAVORS

In strong and electromagnetic interactions, hadronic avor is conserved, i.e. the conversion of a quark of one avor (d u s c b t) into a quark of another avor is forbidden. In the Standard Model, the weak interactions violate these conservation laws in a manner described by the Cabibbo-KobayashiMaskawa mixing (see the section \Cabibbo-Kobayashi-Maskawa Mixing Matrix"). The way in which these conservation laws are violated is tested as follows: (a) S = Q rule. In the strangeness-changing semileptonic decay of strange particles, the strangeness change equals the change in charge of the hadrons. Tests come from limits on decay rates such as ;( + ! ne+ )=;( + ! all) < 5  10;6, and from a detailed analysis of KL ! e , which yields the parameter x, measured to be (Re x, Im x) = (;0:002  0:006, 0:0012  0:0021). Corresponding rules are C = Q and B = Q . (b) Change of avor by two units. In the Standard Model this occurs only in second-order weak interactions. The classic example is S = 2 via K 0 ; K 0 mixing, which is directly measured by m(KL) ; m(KS ) = (3:483  0:006)  10;12 MeV. There is now evidence for B 0 ; B 0 mixing (B = 2), with the corresponding mass dierence between the eigenstates (mBH0 ; mBL0 ) = (0:751  0:012);B0 = (3:304  0:045)  10;10 MeV, and for Bs0{B0s mixing, with (mBsH 0 {mB 0 ) > 20:6 ;B 0 or s sL ;9 0 > 9  10 MeV (CL=95%). For D ; D0 mixing mDH0 ; mDL0 < 5  10;11 MeV. All results are consistent with the second-order calculations in the Standard Model. (c) Flavor-changing neutral currents. In the Standard Model the neutral-current interactions do not change avor. The low rate ;(KL ! + ;)=;(KL ! all) = (7:23  0:14)  10;9 puts limits on such interactions the nonzero value for this rate is attributed to a combination of the weak and electromagnetic interactions. The best test should come from K + ! + , which occurs in the Standard Model only as a second-order weak process with a branching fraction of (0.4 to 1.2)10;10. Recent results, including observation of two events, yields :8 ;10 4]. Limits for ;(K + ! + )=;(K + ! all) = (1:6+1 ;0:8 )  10 charm-changing or bottom-changing neutral currents are much less stringent: ;(D0 ! + ;)=;(D0 ! all) < 4  10;6 and ;(B 0 ! + ;)=;(B 0 ! all) < 1:6  10;7. One cannot isolate avor-changing neutral current (FCNC) eects in non leptonic decays. For example, the FCNC transition s ! d + (u + u) is equivalent to the charged-current transition s ! u + (u + d). Tests for FCNC are therefore limited to hadron decays into lepton pairs. Such decays are expected only in second-order in the electroweak coupling in the Standard Model.

References

1. R. Carosi et al., Phys. Lett. B237, 303 (1990). 2. B. Schwingenheuer et al., Phys. Rev. Lett. 74, 4376 (1995). Unless otherwise stated, limits are given at the 90% condence level, while errors are given as 1 standard deviation.

3. A. Angelopoulos et al., Phys. Lett. B444, 43 (1998) L. Wolfenstein, Phys. Rev. Lett. 83, 911 (1999). 4. S. Adler et al., Phys. Rev. Lett. 88, 041803 (2002). TESTS OF DISCRETE SPACE-TIME SYMMETRIES CHARGE CONJUGATION (C) INVARIANCE ;( 0 ! 3 )/;total  C-nonconserving decay parameters + ; 0 left-right asymmetry parameter + ; 0 sextant asymmetry parameter + ; 0 quadrant asymmetry parameter + ;  left-right asymmetry parameter + ;  parameter  (D-wave) ;( ! 3 )/;total ;( ! 0 e + e ; )/;total ;( ! 0 + ; )/;total ;(!(782) !  0 )/;total ;(!(782) ! 3 0 )/;total ;(0 (958) ! 0 e + e ; )/;total ;(0 (958) !  e + e ; )/;total ;(0 (958) ! 3 )/;total ;(0 (958) ! + ; 0 )/;total ;(0 (958) ! + ; )/;total

<3:1  10;8 , CL = 90% (0:09  0:17)  10;2

(0:18  0:16)  10;2

(; 0:17  0:17)  10;2 (0:9  0:4)  10;2

a] a] a] a] a] a]

; 0:02  0:07 (S = 1.3) <5  10;4 , CL = 95% <4  10;5 , CL = 90% <5  10;6 , CL = 90% <1  10;3 , CL = 90% <3  10;4 , CL = 90% <1:4  10;3 , CL = 90% <2:4  10;3 , CL = 90% <1:0  10;4 , CL = 90% <6:0  10;5 , CL = 90% <1:5  10;5 , CL = 90%

PARITY (P) INVARIANCE e electric dipole moment  electric dipole moment Re(d  )

;( ! + ; )/;total ;( ! 0 0 )/;total ;( ! 4 0 )/;total ;(0 (958) ! + ; )/;total ;(0 (958) ! 0 0 )/;total p electric dipole moment n electric dipole moment electric dipole moment

(0:07  0:07)  10;26 e cm (3:7  3:4)  10;19 e cm ; 0:22 to 0:45  10;16 e cm, CL = 95% <3:3  10;4 , CL = 90% <4:3  10;4 , CL = 90% <6:9  10;7 , CL = 90% <2  10;2 , CL = 90% <9  10;4 , CL = 90% <0:54  10;23 e cm <0:63  10;25 e cm, CL = 90% <1:5  10;16 e cm, CL = 95%

TIME REVERSAL (T) INVARIANCE Limits on e , ,  , p, n, and electric dipole moments under Parity Invariance above are also tests of Time Reversal Invariance.

 decay parameters

transverse e + polarization normal to plane of  spin, e + momentum 0 /A 0 /A PT in K + ! 0 +  PT in K + ! +   Im( ) in K + ! 0 +  decay (from transverse  pol.) asymmetry AT in K 0 -K 0 mixing Im( ) in K 03 decay (from transverse  pol.) n ! p e ; e decay parameters AV , phase of g A relative to g V triple correlation coecient D triple correlation coecient D for  ; ! ne ; e

0:007  0:023

(0  4)  10;3 (2  6)  10;3 (; 4  5)  10;3 (; 0:6  1:9)  10;2 ; 0:014  0:014

(6:6  1:6)  10;3 ; 0:007  0:026

b] (180:08  0:10) (; 0:6  1:0)  10;3 0:11  0:10

83

Tests of Conservation Laws

CP INVARIANCE Re(d w ) Im(d w ) ;( ! + ; )/;total ;( ! 0 0 )/;total ;( ! 4 0 )/;total ;(0 (958) ! + ; )/;total ;(0 (958) ! 0 0 )/;total K  !  + ; rate dierence/average K  !  0 0 rate dierence/average K  !  0  rate dierence/average (g  + ; g  ; ) / (g + + g ; ) for K  ! +; + ;(K  );;(K ;  ) (K  ) = ;(K +  )+;(K ;  ) Im(+;0 ) = Im(A(K 0S ! + ; 0 , CPviolating) / A(K 0L ! + ; 0 )) Im(000 ) = Im(A(K 0S ! 0 0 0 )/A(K 0 ! 0 0 0 )) L CP asymmetry A in K 0S ! + ; e + e ; ;(K 0S ! 3 0 )/;total linear coecient j for K 0L ! + ; 0 quadratic coecient f for K 0L ! + ; 0

0+; / for K 0L ! + ;  ;(K 0L ! 0 + ; )/;total ;(K 0L ! 0 e + e ; )/;total ;(K 0L ! 0 )/;total ACP (K 0S  ) in D  ! K 0S  ACP (K 0S K  ) in D  ! K 0S K  ACP (K + K ;  ) in D  ! K + K ;  ACP (K  K 0 ) in D + ! K + K 0 , D ; ! K ; K 0 ACP (  ) in D  !  ACP ( + ;  ) in D  ! + ;  ACP (K + K ; ) in D 0 , D 0 ! K + K ; ACP (K 0S K 0S ) in D 0 , D 0 ! K 0S K 0S ACP ( + ; ) in D 0 , D 0 ! + ; ACP ( 0 0 ) in D 0 , D 0 ! 0 0 ACP (K 0S ) in D 0 , D 0 ! K 0S ACP (K 0S 0 ) in D 0 , D 0 ! K 0S 0 ACP (K   ) in D 0 ! K + ; , D 0 ! K; + ACP (K   0 ) in D 0 ! K ; + 0 , D0 ! K + ; 0 ACP (K   0 ) in D 0 ! K + ; 0 , D0 ! K ; + 0 ACP (B + ! J =(1S) K + ) ACP (B + ! J =(1S) + ) ACP (B + ! (2S)K + ) ACP (B + ! D 0 K + ) ACP (B + ! DCP(+1) K + ) ACP (B + ! DCP(; 1) K + ) ACP (B + ! + 0 ) ACP (B + ! K + 0 ) ACP (B + ! K 0S + ) ACP (B + ! + ; + ) ACP (B + ! + 0 ) ACP (B + ! K + ; + ) ACP (B + ! K + K ; K + ) ACP (B + ! K + 0 ) ACP (B + ! ! + ) ACP (B + ! ! K + ) ACP (B + ! K + ) ACP (B + ! K  (892)+ ) ACP (B + ! 0 K  (892)+ ) Re( B 0 )/(1+ B 0 2 ) AT =CP ACP (B 0 ! K + ; ) ACP (B 0 ! + ; )

<0:50  10;17 e cm, CL = 95% <1:1  10;17 e cm, CL = 95% <3:3  10;4 , CL = 90% <4:3  10;4 , CL = 90% <6:9  10;7 , CL = 90% <2  10;2 , CL = 90% <9  10;4 , CL = 90% (0:07  0:12)% (0:0  0:6)% (0:9  3:3)% (; 0:7  0:5)%

; 0:02  0:12 ; 0:002  0:009 ; 0:05  0:13 (; 1  4)% <1:4  10;5 , CL = 90% 0:0012  0:0008 0:004  0:006 <0:3, CL = 90% c] <3:8  10;10 , CL = 90% c] <5:1  10;10 , CL = 90% d] <5:9  10;7 , CL = 90% ; 0:016  0:017 0:07  0:06 0:002  0:011 ; 0:02  0:05

; 0:014  0:033 ; 0:02  0:04 0:005  0:016 ; 0:23  0:19 0:021  0:026 0:00  0:05 ; 0:03  0:09 0:001  0:013 0:08  0:09 ; 0:03  0:09 0:09 +0 ; 0::2522

; 0:007  0:019 ; 0:01  0:13 ; 0:037  0:025 0:04  0:07 0:06  0:19 ; 0:19  0:18 0:05  0:15 ; 0:10  0:08 0:03  0:08 (S = 1.1) ; 0:39  0:35 ; 0:09  0:16 0:01  0:08 0:02  0:08 0:009  0:035 ; 0:21  0:19 ; 0:21  0:28 0:03  0:07 0:09  0:15 0:20  0:31 (0:5  3:1)  10;3 0:005  0:018 ; 0:09  0:04 ; 0:18  0:09

Unless otherwise stated, limits are given at the 90% condence level, while errors are given as 1 standard deviation.

ACP (B 0 ! + K ; ) ACP (B 0 ! K  (892)+ ; ) ACP (B 0 ! K  (892)0 ) ACP (B 0 ! D  (2010)+ D ; ) C (B 0 ! + ; ) S (B 0 ! + ; ) C (B 0 ! + ; ) S (B 0 ! + ; ) C0 (958)K (B 0 ! 0 (958)K 0S ) S0 (958)K (B 0 ! 0 (958)K 0S ) C K 0 (B 0 ! K 0S ) S S K 0 (B 0 ! K 0S ) S CK + K ; K 0 (B 0 ! K + K ; K 0S ) S SK + K ; K 0 (B 0 ! K + K ; K 0S ) S CD  (2010); D + (B 0 ! D  (2010); D + ) SD  (2010); D + (B 0 ! D  (2010); D + ) CD  (2010)+ D ; (B 0 ! D  (2010)+ D ; ) SD  (2010)+ D ; (B 0 ! D  (2010)+ D ; ) CJ =(1S) 0 (B 0 ! J =(1S) 0 ) SJ =(1S) 0 (B 0 ! J =(1S) 0 ) C (B 0 ! + ; ) S (B 0 ! + ; )  (B 0 ! c c K 0 )  (B 0 ! D + D ; ) Im() (B 0 ! D + D ; ) ACP (B ! K  (892)  ) ACP (B ! s  )     ; ( ) + + ( ) / ; ( ) ; + ( )  ( ; ) ; ( ); ( + ) + ( )]  ( ; ) ; ( )+ ( + ) + ( )]  ( ; ! K ; )+ ( + ! K + )]/2

0:28  0:19 0:26  0:35 0:05  0:10 ; 0:03  0:12 ; 0:51  0:23 (S = 1.2) ; 0:5  0:6 (S = 2.3) 0:36  0:18 0:19  0:24 0:04  0:13 0:27  0:21 0:15  0:30

; 1:0  0:5 0:17  0:16 ; 0:51  0:26 ; 0:2  0:4 ; 0 : 2  0 :7 ; 0:5  0:4 ; 0:8  0:8 0:4  0:4 0:1  0:5 0:28  0:19 0:15  0:25 0:949  0:045 0:75  0:19 0:05  0:31 ; 0:01  0:07 ; 0:08  0:11 0:012  0:021 0:012  0:014 ; 0:004  0:040

CP VIOLATION OBSERVED charge asymmetry in K 0`3 decays L = weighted average of L () and L (e) L () = ;( ; +  ) ; ;( + ;  )]/sum L (e) = ;( ; e + e ) ; ;( + e ; e )]/sum parameters for K 0L ! 2 decay 00 = A(K 0L ! 2 0 ) / A(K 0S ! 2 0 ) +; = A(K 0L ! + ; ) / A(K 0S ! + ; )

= (2 +; + 00 )/3 00 /+; Re( 0 / ) = (1; 00 /+; )/3 Assuming CPT +; , phase of +; 00 , phase of 00 = (2 +; + 00 )/3 Not assuming CPT +; , phase of +; 00 , phase of 00 = (2 +; + 00 )/3 CP asymmetry A in K 0L ! + ; e + e ; CP from K 0L ! e + e ; e + e ; CP from K 0L ! e + e ; e + e ; parameters for K 0L ! + ;  decay +; = A(K 0L ! + ;  , CP violating)/A(K 0S ! + ;  ) +; = phase of +; ;(K 0L ! + ; )/;total

(0:327  0:012)% (0:304  0:025)% (0:333  0:014)% (2:276  0:014)  10;3 (2:288  0:014)  10;3 (2:284  0:014)  10;3 e] 0:9950  0:0008 (S = 1.6) e] (1:67  0:26)  10;3 (S = 1.6) (43:52  0:06) (S = 1.3) (43:50  0:06) (S = 1.3) (43:51  0:05) (S = 1.2) (43:4  0:7) (S = 1.3) (43:7  0:8) (S = 1.2) (43:5  0:7) (S = 1.3) (13:8  2:2)% ; 0:23  0:09 ; 0:09  0:09 (2:35  0:07)  10;3 (44  4) (2:090  0:025)  10;3 (S = 1.1)

84

Tests of Conservation Laws

(9:32  0:12)  10;4 (S = 1.1)

;(K 0L ! 0 0 )/;total Parameters for B 0 ! J = K 0S sin(2 )

0:731  0:056

CPT INVARIANCE (m W + ; m W ; ) / m average (m e + ; m e ; ) / m average  qe + + qe ; e (g e + ; g e ; ) / gaverage ( + ;  ; ) /  average (g + ; g ; ) / g average (m + ; m ; ) / m average ( + ;  ; ) /  average (m K + ; m K ; ) / m average ( K + ;  K ; ) /  average K  !   rate dierence/average K  !  0 rate dierence/average  in K 0 ; K 0 mixing real part of  imaginary part of  m K 0 ; m K 0 / m average (; K 0 ; ; K 0 )/m average phase dierence 00 ; +; Re( 23 +; + 31 00 ); 2L ACPT (K   ) in D 0 ! K ; + , D 0 ! K+ ; m p ;m p /m p q q q ( mpp { mpp )/ mpp  qp + q p e  ( p +  p )  p (m n ; m n )/ m n  (m ; m ) m ( ;  ) /  (  + ;   ; ) /   +  (  + +   ; )   + (m  ; ; m  + ) / m  ; (  ; ;   + ) /   ; (  ; +   + ) /   ; (m  ; ; m  + ) / m  ; (  ; ;   + ) /   ;

f ]

g]

h] h]

; 0:002  0:007 <8  10;9 , CL = 90% <4  10;8 (; 0:5  2:1)  10;12 (2  8)  10;5 (; 2:6  1:6)  10;8 (2  5)  10;4 (6  7)  10;4 (; 0:6  1:8)  10;4 (0:11  0:09)% (S = 1.2) (; 0:5  0:4)% (0:8  1:2)% (2:9  2:7)  10;4 (0:02  0:05)  10;3 <10;18 , CL = 90% (8  8)  10;18 (0:2  0:4) (; 3  35)  10;6 0:008  0:008 <1:0  10;8 , CL = 90% (; 9  9)  10;11 <1:0  10;8 , CL = 90% (; 2:6  2:9)  10;3 (9  5)  10;5 (; 0:1  1:1)  10;5 (S = 1.6) ; 0:001  0:009 (; 0:6  1:2)  10;3 0:014  0:015 (1:1  2:7)  10;4 0:02  0:18 +0:01  0:05 (; 1  8)  10;5 ; 0:002  0:040

TESTS OF NUMBER CONSERVATION LAWS LEPTON FAMILY NUMBER Lepton family number conservation means separate conservation of each of Le , L , L .

;(Z ! e   )/;total i] <1:7  10;6 , CL = 95% ;(Z ! e    )/;total i] <9:8  10;6 , CL = 95% ;(Z !    )/;total i] <1:2  10;5 , CL = 95% limit on ; ! e ; conversion (; 32 S ! e ; 32 S) / <7  10;11 , CL = 90% (; 32 S !  32 P ) (; Ti ! e ; Ti) / <4:3  10;12 , CL = 90% (; Ti ! capture) ; ; ( Pb ! e Pb) / <4:6  10;11 , CL = 90% (; Pb ! capture) limit on muonium ! antimuonium <0:0030, CL = 90% conversion Rg = GC / GF j] <1:2  10;2 , CL = 90% ;(; ! e ; e  )/;total ;(; ! e ;  )/;total <1:2  10;11 , CL = 90% ;(; ! e ; e + e ; )/;total <1:0  10;12 , CL = 90% ;(; ! e ; 2 )/;total <7:2  10;11 , CL = 90% Unless otherwise stated, limits are given at the 90% condence level, while errors are given as 1 standard deviation.

;( ; ! e ;  )/;total <2:7  10;6 , CL = 90% ;( ; ! ;  )/;total <1:1  10;6 , CL = 90% ;( ; ! e ; 0 )/;total <3:7  10;6 , CL = 90% ;( ; ! ; 0 )/;total <4:0  10;6 , CL = 90% ;( ; ! e ; K 0S )/;total <9:1  10;7 , CL = 90% ;( ; ! ; K 0S )/;total <9:5  10;7 , CL = 90% ;( ; ! e ; )/;total <8:2  10;6 , CL = 90% ;( ; ! ; )/;total <9:6  10;6 , CL = 90% ;( ; ! e ; 0 )/;total <2:0  10;6 , CL = 90% ;( ; ! ; 0 )/;total <6:3  10;6 , CL = 90% ;( ; ! e ; K  (892)0 )/;total <5:1  10;6 , CL = 90% ;( ; ! ; K  (892)0 )/;total <7:5  10;6 , CL = 90% ;( ; ! e ; K  (892)0 )/;total <7:4  10;6 , CL = 90% <7:5  10;6 , CL = 90% ;( ; ! ; K  (892)0 )/;total ;( ; ! e ; )/;total <6:9  10;6 , CL = 90% ;( ; ! ; )/;total <7:0  10;6 , CL = 90% ;( ; ! e ; e + e ; )/;total <2:9  10;6 , CL = 90% ;( ; ! e ; + ; )/;total <1:8  10;6 , CL = 90% ;( ; ! e + ; ; )/;total <1:5  10;6 , CL = 90% ;( ; ! ; e + e ; )/;total <1:7  10;6 , CL = 90% ;( ; ! + e ; e ; )/;total <1:5  10;6 , CL = 90% ;( ; ! ; + ; )/;total <1:9  10;6 , CL = 90% ;( ; ! e ; + ; )/;total <2:2  10;6 , CL = 90% ;( ; ! ; + ; )/;total <8:2  10;6 , CL = 90% ;( ; ! e ; + K ; )/;total <6:4  10;6 , CL = 90% ;( ; ! e ; ; K + )/;total <3:8  10;6 , CL = 90% ;( ; ! e ; K 0S K 0S )/;total <2:2  10;6 , CL = 90% ;( ; ! e ; K + K ; )/;total <6:0  10;6 , CL = 90% ;( ; ! ; + K ; )/;total <7:5  10;6 , CL = 90% ;( ; ! ; ; K + )/;total <7:4  10;6 , CL = 90% ;( ; ! ; K 0S K 0S )/;total <3:4  10;6 , CL = 90% ;( ; ! ; K + K ; )/;total <1:5  10;5 , CL = 90% ;( ; ! e ; 0 0 )/;total <6:5  10;6 , CL = 90% ;( ; ! ; 0 0 )/;total <1:4  10;5 , CL = 90% ;( ; ! e ; )/;total <3:5  10;5 , CL = 90% ;( ; ! ; )/;total <6:0  10;5 , CL = 90% ;( ; ! e ; 0 )/;total <2:4  10;5 , CL = 90% ;( ; ! ; 0 )/;total <2:2  10;5 , CL = 90% ;( ; ! e ; light boson)/;total <2:7  10;3 , CL = 95% ;( ; ! ; light boson)/;total <5  10;3 , CL = 95% LEPTON FAMILY NUMBER VIOLATION IN NEUTRINOS Solar Neutrinos   = 32:5 +2 ;+12::43:2  ;5 2 2 m = 7:1;0:6  10 eV Atmospheric Neutrinos 36 < atm < 54 , CL = 90% 1:3  10;3 eV2 < m2atm < 3:0  10;3 eV2 , CL = 90% ;( + ! + e )/;total k] <8:0  10;3 , CL = 90% ;( + ! ; e + e + )/;total <1:6  10;6 , CL = 90% ;( 0 ! + e ; )/;total <3:8  10;10 , CL = 90% ;( 0 ! ; e + )/;total <3:4  10;9 , CL = 90% ;( 0 ! + e ; + ; e + )/;total <1:72  10;8 , CL = 90% ;( ! + e ; + ; e + )/;total <6  10;6 , CL = 90% ;(0 (958) ! e )/;total <4:7  10;4 , CL = 90% ;(K + ! ; e + e + )/;total <2:0  10;8 , CL = 90% ;(K + ! + e )/;total k] <4  10;3 , CL = 90% ;(K + ! + + e ; )/;total <2:8  10;11 , CL = 90% ;(K + ! + ; e + )/;total <5:2  10;10 , CL = 90% ;(K 0L ! e   )/;total i] <4:7  10;12 , CL = 90% ;(K 0L ! e  e    )/;total i] <4:12  10;11 , CL = 90% ;(K 0L ! 0  e  )/;total i] <6:2  10;9 , CL = 90% ;(D + ! + e   )/;total i] <3:4  10;5 , CL = 90% ;(D + ! K + e   )/;total i] <6:8  10;5 , CL = 90% ;(D 0 !  e  )/;total i] <8:1  10;6 , CL = 90% ;(D 0 ! 0 e   )/;total i] <8:6  10;5 , CL = 90% ;(D 0 !  e   )/;total i] <1:0  10;4 , CL = 90% ;(D 0 ! + ; e   )/;total i] <1:5  10;5 , CL = 90% ;(D 0 ! 0 e   )/;total i] <4:9  10;5 , CL = 90% ;(D 0 ! ! e   )/;total i] <1:2  10;4 , CL = 90% ;(D 0 ! K ; K + e   )/;total i] <1:8  10;4 , CL = 90% ;(D 0 ! e   )/;total i] <3:4  10;5 , CL = 90%

85

;(D 0 ! K 0 e   )/;total ;(D 0 ! K ; + e   )/;total ;(D 0 ! K  (892)0 e   )/;total + e   )/;total ;(D + s ! +   ;(D + s ! K e  )/;total ;(B + ! + e + ; )/;total ;(B + ! + e ; + )/;total ;(B + ! K + e + ; )/;total ;(B + ! K + e ; + )/;total ;(B + ! K  (892)+ e   )/;total ;(B + ! ; e + + )/;total ;(B + ! K  (892); e + + )/;total ;(B 0 ! e   )/;total ;(B 0 ! K 0 e   )/;total ;(B 0 ! K  (892)0 e   )/;total ;(B 0 ! e    )/;total ;(B 0 !    )/;total ;(B ! e   s)/;total ;(B ! e   )/;total ;(B !  e   )/;total ;(B ! K e   )/;total ;(B ! K  (892)e   )/;total ;(B 0s ! e   )/;total ;(J =(1S) ! e   )/;total

i] i] i] i] i]

i] i] i] i]

i]

<1:0  10;4 , CL = 90% <5:53  10;4 , CL = 90% <8:3  10;5 , CL = 90% <6:1  10;4 , CL = 90% <6:3  10;4 , CL = 90% <6:4  10;3 , CL = 90% <6:4  10;3 , CL = 90% <8  10;7 , CL = 90% <6:4  10;3 , CL = 90% <7:9  10;6 , CL = 90% <3:3  10;6 , CL = 90% <4:4  10;6 , CL = 90% <1:7  10;7 , CL = 90% <4:0  10;6 , CL = 90% <3:4  10;6 , CL = 90% <5:3  10;4 , CL = 90% <8:3  10;4 , CL = 90% <2:2  10;5 , CL = 90% <1:6  10;6 , CL = 90% <3:2  10;6 , CL = 90% <1:6  10;6 , CL = 90% <6:2  10;6 , CL = 90% <6:1  10;6 , CL = 90% <1:1  10;6 , CL = 90%

TOTAL LEPTON NUMBER Violation of total lepton number conservation also implies violation of lepton family number conservation.

;(Z ! p e)/;total <1:8  10;6 , CL = 95% ;(Z ! p )/;total <1:8  10;6 , CL = 95% limit on ; ! e + conversion (; 32 S ! e + 32 Si ) / <9  10;10 , CL = 90% (; 32 S !  32 P ) (; 127 I ! e + 127 Sb ) / <3  10;10 , CL = 90% (; 127 I ! anything) ; + ( Ti ! e Ca) / <3:6  10;11 , CL = 90% (; Ti ! capture) ;( ; ! e + ; ; )/;total <1:9  10;6 , CL = 90% ;( ; ! + ; ; )/;total <3:4  10;6 , CL = 90% ;( ; ! e + ; K ; )/;total <2:1  10;6 , CL = 90% ;( ; ! e + K ; K ; )/;total <3:8  10;6 , CL = 90% ;( ; ! + ; K ; )/;total <7:0  10;6 , CL = 90% ;( ; ! + K ; K ; )/;total <6:0  10;6 , CL = 90% <3:5  10;6 , CL = 90% ;( ; ! p  )/;total <1:5  10;5 , CL = 90% ;( ; ! p 0 )/;total <3:3  10;5 , CL = 90% ;( ; ! p 2 0 )/;total <8:9  10;6 , CL = 90% ;( ; ! p )/;total <2:7  10;5 , CL = 90% ;( ; ! p 0 )/;total t1/2 ( 76 Ge ! 76 Se + 2 e ; ) >1:9  1025 yr, CL = 90% k] <1:5  10;3 , CL = 90% ;( + ! + e )/;total ;(K + ! ; + e + )/;total <5:0  10;10 , CL = 90% ;(K + ! ; e + e + )/;total <6:4  10;10 , CL = 90% ;(K + ! ; + + )/;total k] <3:0  10;9 , CL = 90% k] <3:3  10;3 , CL = 90% ;(K + ! + e )/;total <3  10;3 , CL = 90% ;(K + ! 0 e + e )/;total ;(D + ! ; e + e + )/;total <9:6  10;5 , CL = 90% ;(D + ! ; + + )/;total <4:8  10;6 , CL = 90% ;(D + ! ; e + + )/;total <5:0  10;5 , CL = 90% ;(D + ! ; + + )/;total <5:6  10;4 , CL = 90% ;(D + ! K ; e + e + )/;total <1:2  10;4 , CL = 90% ;(D + ! K ; + + )/;total <1:3  10;5 , CL = 90% ;(D + ! K ; e + + )/;total <1:3  10;4 , CL = 90% ;(D + ! K  (892); + + )/;total <8:5  10;4 , CL = 90% ;(D 0 ! ; ; e + e + + c.c.)/;total <1:12  10;4 , CL = 90% ;(D 0 ! ; ; + + + c.c.)/;total <2:9  10;5 , CL = 90% ;(D 0 ! K ; ; e + e + + c.c.)/;total <2:06  10;4 , CL = 90% ;(D 0 ! K ; ; + + + c.c.)/;total <3:9  10;4 , CL = 90% ;(D 0 ! K ; K ; e + e + + c.c.)/;total <1:52  10;4 , CL = 90% ;(D 0 ! K ; K ; + + + c.c.)/;total <9:4  10;5 , CL = 90% Unless otherwise stated, limits are given at the 90% condence level, while errors are given as 1 standard deviation.

Tests of Conservation Laws

;(D 0 ! ; ; e + + + c.c.)/;total ;(D 0 ! K ; ; e + + + c.c.)/;total ;(D 0 ! K ; K ; e + + + c.c.)/;total ; e + e +)/;total ;(D + s ! ; + + )/;total ;(D + s ! ; e + +)/;total ;(D + ! s ;++ ;(D + s ! K e e )/;total ;++ ;(D + s ! K   )/;total ;++ ;(D + s ! K e  )/;total (892); + +)/;total ;(D + ! K s ;(B + ! ; e + e + )/;total ;(B + ! ; + + )/;total ;(B + ! ; e + + )/;total ;(B + ! ; e + e + )/;total ;(B + ! ; + + )/;total ;(B + ! K ; e + e + )/;total ;(B + ! K ; + + )/;total ;(B + ! K ; e + + )/;total ;(B + ! K  (892); e + e + )/;total ;(B + ! K  (892); + + )/;total ;( ; ! p ; ; )/;total ;++ ;( + c !    )/;total

<7:9  10;5 , CL = 90% <2:18  10;4 , CL = 90% <5:7  10;5 , CL = 90% <6:9  10;4 , CL = 90% <2:9  10;5 , CL = 90% <7:3  10;4 , CL = 90% <6:3  10;4 , CL = 90% <1:3  10;5 , CL = 90% <6:8  10;4 , CL = 90% <1:4  10;3 , CL = 90% <1:6  10;6 , CL = 90% <1:4  10;6 , CL = 90% <1:3  10;6 , CL = 90% <2:6  10;6 , CL = 90% <5:0  10;6 , CL = 90% <1:0  10;6 , CL = 90% <1:8  10;6 , CL = 90% <2:0  10;6 , CL = 90% <2:8  10;6 , CL = 90% <8:3  10;6 , CL = 90% <4  10;4 , CL = 90% <7:0  10;4 , CL = 90%

BARYON NUMBER

;(Z ! p e)/;total <1:8  10;6 , CL = 95% ;(Z ! p )/;total <1:8  10;6 , CL = 95% ;( ; ! p  )/;total <3:5  10;6 , CL = 90% <1:5  10;5 , CL = 90% ;( ; ! p 0 )/;total <3:3  10;5 , CL = 90% ;( ; ! p 2 0 )/;total <8:9  10;6 , CL = 90% ;( ; ! p )/;total <2:7  10;5 , CL = 90% ;( ; ! p 0 )/;total p mean life >2:1  1029 years, CL = 90% A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.  (N ! e + ) > 158 (n), > 1600 (p)  1030 years, CL = 90%  (N ! + ) > 100 (n), > 473 (p)  1030 years, CL = 90%  (N ! e + K) > 17 (n), > 150 (p)  1030 years, CL = 90%  (N ! + K) > 26 (n), > 120 (p)  1030 years, CL = 90% >0:86  108 s, CL = 90% limit on nn oscillations (free n) l] >1:2  108 s, CL = 90% limit on nn oscillations (bound n)

ELECTRIC CHARGE (Q) e ! e  and astrophysical limits ;(n ! p e e )/;total

m] >4:6  1026 yr, CL = 90% <8  10;27 , CL = 68%

S = Q RULE Violations allowed in second-order weak interactions.

<1:2  10;8 , CL = 90% ;(K + ! + + e ; e )/;total <3:0  10;6 , CL = 95% ;(K + ! + + ;  )/;total x = A(K 0 ! ; `+ )/A(K 0 ! ; `+ ) = A(S=;Q)/A(S=Q) real part of x ; 0:002  0:006 imaginary part of x 0:0012  0:0021  ;  ; + + ; ; <0:043 ;  ! n ` /;  ! n `

+ + ;( ! ne e )/;total <5  10;6 , CL = 90% ;( + ! n +  )/;total <3:0  10;5 , CL = 90% ;( 0 !  ; e + e )/;total <9  10;4 , CL = 90% ;( 0 !  ; +  )/;total <9  10;4 , CL = 90%

86

Tests of Conservation Laws S = 2 FORBIDDEN Allowed in second-order weak interactions.

! p ;)/;total ! p e ; e )/;total ! p ;  )/;total ;( ; ! n ; )/;total ;( ; ! ne ; e )/;total ;( ; ! n ;  )/;total ;( ; ! p ; ; )/;total ;( ; ! p ; e ; e )/;total ;( ; ! p ; ;  )/;total ;( ; ! ; )/;total

<4  10;5 , CL = 90% <1:3  10;3 <1:3  10;3 <1:9  10;5 , CL = 90% <3:2  10;3 , CL = 90% <1:5  10;2 , CL = 90% <4  10;4 , CL = 90% <4  10;4 , CL = 90% <4  10;4 , CL = 90% <1:9  10;4 , CL = 90%

;( 0 ;( 0 ;( 0

S = 2 VIA MIXING Allowed in second-order weak interactions, e.g. mixing.

(0:5292  0:0010)  1010 h s; 1 (S = 1.2) (3:483  0:006)  10;12 MeV

; mK 0S mK 0 ; mK 0 L S

mK 0

L

C = 2 VIA MIXING Allowed in second-order weak interactions, e.g. mixing. mD0 ; mD0 1 2 (;D 0 { ;D 0 )/; = 2y 1 2 ;(D 0 ! K + `; ` (via D 0 ))/;total ;(D 0 ! K + ; (via D 0 ))/;total ;(D 0 ! K + ; + ; (via D 0 ))/;total ;(D 0 ! ; anything (via D 0 ))/;total

n] <7  1010 h s; 1 , CL = 95% 0:016  0:010 <1:7  10;4 , CL = 90% <1:6  10;5 , CL = 95% <4  10;4 , CL = 90% <4  10;4 , CL = 90%

B = 2 VIA MIXING Allowed in second-order weak interactions, e.g. mixing.

d

m B 0 = m B 0 ; m B 0 H L xd = m B 0 /;B 0 m B 0 = m B 0 { m B 0 s sH sL xs = m B 0 /;B 0 s s

s

0:186  0:004 (0:502  0:007)  1012 h s; 1

0:771  0:012 >14:4  1012 h s; 1 , CL = 95%

>20:6, CL = 95% >0:49883, CL = 95%

S = 1 WEAK NEUTRAL CURRENT FORBIDDEN Allowed by higher-order electroweak interactions.

;(K + ! + e + e ; )/;total ;(K + ! + + ; )/;total ;(K + ! + )/;total ;(K + ! + 0 )/;total ;(K 0S ! + ; )/;total ;(K 0S ! e + e ; )/;total ;(K 0S ! 0 e + e ; )/;total ;(K 0L ! + ; )/;total ;(K 0L ! e + e ; )/;total ;(K 0L ! + ; e + e ; )/;total ;(K 0L ! 0 0 e + e ; )/;total ;(K 0L ! + ; e + e ; )/;total ;(K 0L ! e + e ; e + e ; )/;total ;(K 0L ! 0 + ; )/;total ;(K 0L ! 0 e + e ; )/;total ;(K 0L ! 0 )/;total ;( + ! p e + e ; )/;total

(2:88  0:13)  10;7 (8:1  1:4)  10;8 (S = 2.7) (1:6 +1 ; 0::88)  10;10 <4:3  10;5 , CL = 90% <3:2  10;7 , CL = 90% <1:4  10;7 , CL = 90% o] (3:0 +1 ; 1::52)  10;9 (7:27  0:14)  10;9 (9 +6 ; 4)  10;12 p] (3:11  0:19)  10;7 <6:6  10;9 , CL = 90% (2:69  0:27)  10;9 (3:75  0:27)  10;8 <3:8  10;10 , CL = 90% <5:1  10;10 , CL = 90% <5:9  10;7 , CL = 90% <7  10;6

Unless otherwise stated, limits are given at the 90% condence level, while errors are given as 1 standard deviation.

C = 1 WEAK NEUTRAL CURRENT FORBIDDEN Allowed by higher-order electroweak interactions.

;(D + ! + e + e ; )/;total ;(D + ! + + ; )/;total ;(D + ! + + ; )/;total ;(D 0 !   )/;total ;(D 0 ! e + e ; )/;total ;(D 0 ! + ; )/;total ;(D 0 ! 0 e + e ; )/;total ;(D 0 ! 0 + ; )/;total ;(D 0 !  e + e ; )/;total ;(D 0 ! + ; )/;total ;(D 0 ! + ; e + e ; )/;total ;(D 0 ! 0 e + e ; )/;total ;(D 0 ! + ; + ; )/;total ;(D 0 ! 0 + ; )/;total ;(D 0 ! ! e + e ; )/;total ;(D 0 ! !+ ; )/;total ;(D 0 ! K ; K + e + e ; )/;total ;(D 0 ! e + e ; )/;total ;(D 0 ! K ; K + + ; )/;total ;(D 0 ! + ; )/;total ;(D 0 ! K ; + e + e ; )/;total ;(D 0 ! K ; + + ; )/;total ;(D 0 ! + ; 0 + ; )/;total + + ; ;(D + s ! K e e )/;total + + ; )/;total ;(D + ! K s  ++; ;(D + s ! K (892)   )/;total + ; ;( + c ! p   )/;total

<5:2  10;5 , CL = 90% <8:8  10;6 , CL = 90% <5:6  10;4 , CL = 90% <2:8  10;5 , CL = 90% <6:2  10;6 , CL = 90% <4:1  10;6 , CL = 90% <4:5  10;5 , CL = 90% <1:8  10;4 , CL = 90% <1:1  10;4 , CL = 90% <5:3  10;4 , CL = 90% <3:73  10;4 , CL = 90% <1:0  10;4 , CL = 90% <3:0  10;5 , CL = 90% <2:2  10;5 , CL = 90% <1:8  10;4 , CL = 90% <8:3  10;4 , CL = 90% <3:15  10;4 , CL = 90% <5:2  10;5 , CL = 90% <3:3  10;5 , CL = 90% <3:1  10;5 , CL = 90% <3:85  10;4 , CL = 90% <3:59  10;4 , CL = 90% <8:1  10;4 , CL = 90% <1:6  10;3 , CL = 90% <3:6  10;5 , CL = 90% <1:4  10;3 , CL = 90% <3:4  10;4 , CL = 90%

B = 1 WEAK NEUTRAL CURRENT FORBIDDEN Allowed by higher-order electroweak interactions.

;(B + ! + e + e ; )/;total ;(B + ! + + ; )/;total ;(B + ! K + e + e ; )/;total ;(B + ! K + + ; )/;total ;(B + ! K + `+ `; )/;total ;(B + ! K + )/;total ;(B + ! K  (892)+ e + e ; )/;total ;(B + ! K  (892)+ + ; )/;total ;(B + ! K  (892)+ `+ `)/;total ;(B 0 !   )/;total ;(B 0 ! e + e ; )/;total ;(B 0 ! + ; )/;total ;(B 0 ! K 0 e + e ; )/;total ;(B 0 ! K 0 + ; )/;total ;(B 0 ! K 0 `+ `; )/;total ;(B 0 ! K  (892)0 e + e ; )/;total ;(B 0 ! K  (892)0 + ; )/;total ;(B 0 ! K  (892)0 )/;total ;(B 0 ! K  (892)0 `+ `; )/;total ;(B ! s e + e ; )/;total ;(B ! s + ; )/;total ;(B ! s `+ `; )/;total ;(B ! K e + e ; )/;total ;(B ! K  (892)e + e ; )/;total ;(B ! K + ; )/;total ;(B ! K  (892) + ; )/;total ;(B ! K `+ `; )/;total ;(B ! K  (892) `+ `; )/;total ;(b ! + ; anything)/;total ;(B 0s ! + ; )/;total ;(B 0s ! e + e ; )/;total ;(B 0s ! (1020) + ; )/;total ;(B 0s ! )/;total

q]

q]

q]

q] q]

<3:9  10;3 , CL = 90% <9:1  10;3 , CL = 90% (6:3 +1 ; 1:::974)  10;;77 (4:5 +1 ; 1:2)  10 (5:3  1:1)  10;7 <2:4  10;4 , CL = 90% <4:6  10;6 , CL = 90% <2:2  10;6 , CL = 90% <2:2  10;6 , CL = 90% <1:7  10;6 , CL = 90% <1:9  10;7 , CL = 90% <1:6  10;7 , CL = 90% <5:4  10;7 , CL = 90% (5:6 +2 ; 2::94)  10;7 <6:8  10;7 , CL = 90% <2:4  10;6 , CL = 90% (1:3  0:4)  10;6 <1:0  10;3 , CL = 90% (1:17  0:30)  10;6 (5:0  2:6)  10;6 (7:9 +3 ; 2:::060)  10;;66 (6:1 +2 ; 1::85)  10;7 (4:8 +1 ; 1:3)  10 (1:5  0:5)  10;6 (4:8  1:2)  10;7 (1:17 +0 ; 0::3733 )  10;6 (5:4  0:8)  10;7 (1:05  0:20)  10;6 <3:2  10;4 , CL = 90% <2:0  10;6 , CL = 90% <5:4  10;5 , CL = 90% <4:7  10;5 , CL = 90% <5:4  10;3 , CL = 90%

87

Tests of Conservation Laws T = 1 WEAK NEUTRAL CURRENT FORBIDDEN Allowed by higher-order electroweak interactions. ;(t ! Z q (q=u,c))/;total

r] <13:7  10;2 , CL = 95%

NOTES

In this Summary Table: When a quantity has \(S = : : :)" to its right, the error on the quantity has p been enlarged by the \scale factor" S, de ned as S = 2 =(N ; 1), where N is the number of measurements used in calculating the quantity. We do this when S > 1, which often indicates that the measurements are inconsistent. When S > 1:25, we also show in the Particle Listings an ideogram of the measurements. For more about S, see the Introduction.

a] C parity forbids this to occur as a single-photon process.

b] Time-reversal invariance requires this to be 0 or 180.

c] Allowed by higher-order electroweak interactions.

d] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.

e] Re(0 /) = 0 / to a very good approximation provided the phases satisfy CPT invariance.

f ] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. D12, 2744 (1975). Rev. D12

Unless otherwise stated, limits are given at the 90% condence level, while errors are given as 1 standard deviation.

g] Derived from measured values of +; , 00 ,  , m K 0 ; m K 0 , and L S  K 0S , as described in the introduction to \Tests of Conservation Laws."

h] These two results are not independent, and both use the more precise measurement of qp /m p /(qp /m p ).

i] The value is for the sum of the charge states or particle/antiparticle states indicated.

j] A test of additive vs. multiplicative lepton family number conservation.

k] Derived from an analysis of neutrino-oscillation experiments.

l] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The rst limit here is from reactor experiments with free neutrons.

m] This is the best limit for the mode e ; !  . The best limit for \electron disappearance" is 6:4  1024 yr.

n] This D 01 ; D 02 limit is inferred from the D 0 -D 0 mixing ratio ;(K + ; (via D 0 )) / ;(K ; + ) near the end of the D 0 Listings.

o] See the K 0S Particle Listings for the energy limits used in this measurement.

p] See the K 0L Particle Listings for the energy limits used in this measurement.

q] An ` indicates an e or a mode, not a sum over these modes.

r] This limit is for ;(t ! Z q)/;(t ! W b).

88