Solid-liquid equilibrium solubility, thermodynamic properties and molecular simulation of cis-5-norbornene-exo-2,3-dicarboxylic anhydride in thirteen pure solvents at various temperatures

Solid-liquid equilibrium solubility, thermodynamic properties and molecular simulation of cis-5-norbornene-exo-2,3-dicarboxylic anhydride in thirteen pure solvents at various temperatures

J. Chem. Thermodynamics 141 (2020) 105967 Contents lists available at ScienceDirect J. Chem. Thermodynamics journal homepage: www.elsevier.com/locat...

2MB Sizes 0 Downloads 0 Views

J. Chem. Thermodynamics 141 (2020) 105967

Contents lists available at ScienceDirect

J. Chem. Thermodynamics journal homepage: www.elsevier.com/locate/jct

Solid-liquid equilibrium solubility, thermodynamic properties and molecular simulation of cis-5-norbornene-exo-2,3-dicarboxylic anhydride in thirteen pure solvents at various temperatures Yameng Wan, Pengshuai Zhang, Haixia He, Jiao Sha, Rui Zhao, Tao Li PhD, Associate Professor ⇑, Baozeng Ren PhD, Prefessor ⇑ School of Chemical Engineering, Zhengzhou University, 450001 Zhengzhou, People’s Republic of China

a r t i c l e

i n f o

Article history: Received 27 May 2019 Received in revised form 16 September 2019 Accepted 21 September 2019 Available online 23 September 2019 Keywords: Cis-5-norbornene-exo-2,3-dicarboxylic anhydride Interaction energy Molecular simulation Activity coefficient model Thermodynamic properties

a b s t r a c t Solubility of cis-5-norbornene-exo-2,3-dicarboxylic anhydride (himic anhydride) in thirteen solvents including methyl acetate (MAC), ethyl acetate (EAC), n-propyl acetate (NPAC), isopropyl acetate (IPAC), n-butyl acetate (NBAC), isobutyl acetate (IBAC), n-amyl acetate (NAAC), methanol (MtOH), ethanol (EtOH), acetone (DMK), N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF) from 278.15 K to 323.15 K and 1,4-dioxane at (288.15–323.15) K was experimentally determined by the gravimetric method under 0.1 MPa. The results showed that the solubility of himic anhydride increased with increasing temperature. The interaction energy between himic anhydride and selected solvents was calculated by molecular simulation to reveal the solubility behavior. Solubility data was correlated by five activity coefficient models including the Two-Suffix Margules model, Wilson model, NRTL model, NRTLSAC model and uniquac model. Values of ARD (average relative deviations) and RMSD (root-mean-square deviation) between experimental and calculated solubility showed that five activity coefficient models provided good performance in this work. Moreover, thermodynamic properties associated with the solution processes were also discussed. Ó 2019 Published by Elsevier Ltd.

1. Introduction Cis-5-norbornene-exo-2,3-dicarboxylic anhydride (CAS Number: 2746–19-2, molecular formula: C9H8O3) is a white lamellar crystal. The three-dimension structure of himic anhydride is shown in Fig. 1. The molar mass and density of himic anhydride are 164.158 gmol1 and 1.405 ± 0.06 gcm3 [1,2], respectively. It is one of the important intermediates for the synthesis of medicine, pesticides, materials and resins. himic anhydride has a endo isomer named cis-5-norbornene-endo-2,3-dicarboxylic anhydride (carbic anhydride). Carbic anhydride has been widely used as modifier, plasticizer and penetrant for polyester resin, alkyd resin, pesticide, urea resin, melamine and so forth [3]. Carbic anhydride also shows a better air-drying property, higher heat resistance, smoothness, electrical performance, corrosion resistance and mechanical strength than phthalic anhydride and tetrahydrophthalic anhydride [4]. Comparing with carbic anhydride, himic anhydride has some advantages like lower melting point and better pharmacolog⇑ Corresponding authors at: School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China. E-mail addresses: [email protected] (T. Li), [email protected] (B. Ren). https://doi.org/10.1016/j.jct.2019.105967 0021-9614/Ó 2019 Published by Elsevier Ltd.

ical effects. Therefore, himic anhydride is more suitable than carbic anhydride for resin and material industry. Furthermore, himic anhydride is raw material for preparing cis-2,3-norbornane-exo-d icarboximide which is the pivotal pharmaceutical intermediates of lurasidone. Traditionally, himic anhydride was synthesized by maleic anhydride and cyclopentadiene via Diels Alder reaction [5]. The products of himic anhydride often had some problems like low purity, highly absorbent and poor crystal habit. As well known, solvent crystallization plays a key role in separation and purification process [6], it is necessary to have knowledge of solubility of himic anhydride in different solvents. However, the solubility of himic anhydride is scarce in the literature. In this work, solubility of himic anhydride in thirteen pure solvents was determined in the range of 278.15 K to 323.15 K, the results of which were correlated by the Two-Suffix Margules model, Wilson model, NRTL model, NRTL-SAC model and uniquac model. The interaction energy between solute and selected solvents was calculated by Accelrys Material Studio DMol3 module. Moreover, the standard partial molar thermodynamic properties of solution were also discussed in this work.

2

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

equipment Bruker D8 Advance (Bruker Corporation, Germany). Samples of raw or recovered equilibrated himic anhydride were carried out under conditions: 2h range of 10–70°; scanning rate of 10°min1, electric current of 40 mA, voltage of 45 kV. 2.4. Solubility measurements

Fig. 1. Chemical structure of himic anhydride.

2. Experimental section 2.1. Materials The raw material of himic anhydride (=0.99, in mass fraction) was purchased from Puyang Huicheng Electronic Material Co., LTD. The details of selected materials used in this work were listed in Table 1. Purities of selected solvents were determined by GC-7900 (Tech com (China) Ltd. Shanghai). 2.2. Differential scanning calorimetry measurement DSC analysis of himic anhydride was determined by DSC 214 Polyma (NETZSCH Scientific Instruments Trading (Shanghai) Co., Ltd). The DSC instrument was calibrated by indium (99.99%, in mass fraction, NETZSCH) with heating rate of 10 Kmin1 under N2 atmosphere (100 mLmin1). About 16.4 mg of himic anhydride was determined from 300 K to 520 K with heating rate of 10 Kmin1 under N2 atmosphere (100 mLmin1). The melting temperature (Tm) and enthalpy of fusion (DfusH) could be obtained from DSC result by corresponding thermal analysis software of ProteusÒ 7.0. 2.3. X-ray diffraction In order to evaluate the possibility of solvates or other polymorphic transformation of himic anhydride during the dissolution process, the crystal forms of raw and recovered equilibrated himic anhydride from selected solvents were measured by XRD

Solubility of himic anhydride was determined by the gravimetric method [7] and described here briefly. Firstly, about 30 mL pure solvent was added into a double glass dissolution kettle. Then, an excessive amount of himic anhydride was added into the dissolution kettle. The dissolution kettle was kept at desired temperature by circulation constant temperature water bath (DCW-0506, standard uncertainty of ±0.01 K, Shanghai Bilon Instrument Co., Ltd., China) and stirred more than 12 h by magnetic stirrer (MS7H550-Pro, Cole-Parmer instruments Co., Ltd, Shanghai). Secondly, solution was kept static for 8 h to achieve balance state. Then, about 10 mL supernatant was filtered into pre-weighed glass dish by an organic membrane (0.22 lm) using a syringe. The weight of filtrate with glass dish was weighed immediately by an electronic analytical balance (FA2014N, Shanghai Jinghua Instruments Co., Ltd. Shanghai, standard uncertainty of ±0.0001 g). The syringe and organic membrane were pre-heat to the same temperature as the solution. Thirdly, the glass dish with solution was put into an electric vacuum drying oven (DZF-6096, Shanghai Yiheng Scientific Instruments Co., Ltd.) at 353.15 K for 12 h till the weight of glass dish was constant. Solubility data was determined for three times in parallel at each temperature to reduce errors. Experimental mole-fraction solubility of himic anhydride(x1) in pure solvents could be given by Eq. (1):

x1 ¼

m1 =M1 m1 =M 1 þ m2 =M 2

ð1Þ

x2 ¼ 1  x1

ð2Þ

where x1 stands for solubility data of solute; x2 is the mole fraction of solvent in mixture solution; m1, M1 and m2, M2 are mass and molar mass of himic anhydride and selected solvents, respectively. 2.5. Simulation method Based on the density functional theory (DFT), the interaction energy between solute and selected solvents was calculated by

Table 1 Detailed information of materials used in this work.a,b,c,d

a

Materials

CAS number

Molecular formula

Density gcm3

Provenance

Purity (Mass fraction)

himic anhydride p-toluic acid Methyl acetate Ethyl acetate n-Propyl acetate Isopropyl acetate n-Butyl acetate Isobutyl acetate n-Amyl acetate Methanol Ethanol 1,4-Dioxane NMP Acetone DMF

2746-19-2 99-94-5 79-20-9 141-78-6 109-60-4 108-21-4 123-86-4 110-19-0 628-63-7 67-56-1 64-17-5 123-91-1 872-50-4 67-64-1 68-12-2

C9H8O3 C8H8O2 C3H6O2 C4H8O2 C5H10O2 C5H10O2 C6H12O2 C6H12O2 C7H14O2 CH4O C2H6O C4H8O2 C5H9NO C3H6O C3H7NO

1.405 ± 0.0620 1.151 ± 0.0620 0.934220 0.900320 0.882025 0.866225 0.882520 0.871220 0.875620 0.791420 0.789320 1.033720 1.023025 0.784525 0.944525

Puyang Huicheng Electronic Material Co., LTD MACKLIN reagent. co., LTD Sinopharm chemical reagent co., LTD Sinopharm chemical reagent co., LTD MACKLIN reagent. co., LTD MACKLIN reagent. co., LTD Sinopharm chemical reagent co., LTD MACKLIN reagent. co., LTD Sinopharm chemical reagent co., LTD MACKLIN reagent. co., LTD MACKLIN reagent. co., LTD Tianjin kermel chemical reagent co., LTD Aladdin biochemical co., LTD Tianjin kermel chemical reagent co., LTD Aladdin biochemical co., LTD

0.99 0.98 0.9845 0.9997 0.9989 0.9945 0.9972 0.9882 0.9981 0.9955 0.9993 0.9989 0.9942 0.9961 0.9969

Himic anhydride stands for cis-5-norbornene-exo-2,3-dicarboxylic anhydride. The purities of selected solvents were determined by Determined by Gas-liquid chromatography (GC-7900) while purities of himic anhydride and p-toluic acid were provided by supplier. c Density value of himic anhydride 1.405 ± 0.0620 stands for the density of himic anhydride at 20 °C is 1.405 gcm3 with standard uncertainty of 0.06 gcm3. d Densities of himic anhydride and p-toluic acid were taken from Ref. [2] while densities of selected solvents were taken from Ref. [1]. b

3

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

molecular simulation to reveal solubility behavior of himic anhydride [8]. All the calculations were obtained by Accelrys Material Studio DMol3 module. Briefly, structural models including himic anhydride, selected solvent and himic anhydride plus solvent were built by Accelrys Material Studio 7.0, respectively. Then, structural models were optimized under function from of the generalized gradient approximation (GGA) and the Perdew-Burke-Ernzerh (PBE) by DMol3 module. The density functional theory with London dispersion corrections (DFT-D) method of Grimme was used in the calculation. The double numeric plus polarization (DNP) basis set was applied to describe the valence orbitals of the involving atoms. Finally, the energy of optimized structures were calculated by DMol3 module. The correction of the basis set superposition (BSSE) was also used in this process. The simulation quality was set as fine in the entire computation. The interaction energy between solute and selected solvent (Einter) could be calculated by:

Einter ¼ DE ¼ EAB  EA  EB

ð3Þ

where the EAB, EA and EB stand for the total energy of solute plus solvent, solvent and solute, respectively.

3.3. Wilson model Wilson model was first presented by Wilson in 1964 based on molecular considerations [15,16]. The Wilson equation for excess Gibbs free energy could be given by:

gE ¼ x1 lnðx1 þ K12 x2 Þ  x2 lnðx2 þ K21 x1 Þ RT

The activity coefficient derived from Eq. (8) can be given by: [17,18]

lnc1 ¼ x2

Based on the solid-liquid phase equilibrium principle, the basic equation for predicting solubility of solid in a liquid could be given by: [11]

ð4Þ

where c1 stands for solute activity coefficient at temperature T; The contribution of second item of Eq. (4) is often next to nothing and can be negligible. Therefore, the Eq. (4) can be simplified as:

lnðc1  x1 Þ ¼ 

  Dfus H T 1 Tm RT



 K12 K21  lnðx2 þ K21  x1 Þ  x1 þ K12  x2 x2 þ K21 x1

ð9Þ

ð10Þ

in which c1 and c2 stand for the activity coefficient of himic anhydride and selected solvent; K12 and K21 are the adjustable parameters related to the molar volumes of pure-component and the characteristic energy differences which could be expressed as:







K12 ¼

m2 k12  k11 m2 Dk12 ¼ exp  exp  m1 RT m1 RT

K21 ¼

m1 k21  k22 m1 Dk21 exp  exp  ¼ m2 RT m2 RT







ð11Þ  ð12Þ

where m1 and m2 represent the pure-component molar volumes of solute and solvents; k12, k11, k21 and k22 represent energies of interaction; Dk12 and Dk12 are characteristic energy differences. 3.4. NRTL model The NRTL (nonrandom, two-liquid) model was presented by Renon in 1968. The NRTL model for excess Gibbs free energy could be given by: [19–21]

3.1. Local composition model

     Dfus H T DC p T Tm  þ ln 1 1 Tm Tm RT T RT

 K12 K21  lnðx1 þ K12  x2 Þ þ x1 þ K12  x2 x2 þ K21  x1



3. Thermodynamic models

lnðc1  x1 Þ ¼ 



lnc2 ¼  x1

2.6. Experiment reliability proof In our previous work, solubility of p-toluylic acid in DMF were determined by the gravimetric method to test the accuracy rate and dependability of the experimental method. Experimental mole -fraction solubility of p-toluylic acid [9] and literature’s data [10] were listed in Table S1 and shown graphically in Fig. S1. Result showed that the method used in this work and experimental values were credible.

ð8Þ

ð5Þ

  gE s21 G21 s12 G12 þ ¼ x1 x2 RT x1 þ x2 G21 x2 þ x1 G12

ð13Þ

The activity coefficient derived from Eq. (13) can be expressed as:

lnc1 ¼

" x22

s21 "

lnc2 ¼ x21

s12



G21 x1 þ x2  G21



G12 x2 þ x1  G12

2 þ 2 þ

s12  G12

# ð14Þ

ðx2 þ x1  G12 Þ2

s21  G21 ðx1 þ x2  G21 Þ2

# ð15Þ

where

s12 ¼

g 12  g 22 Dg 12 ¼ RT RT

s21 ¼

g 21  g 11 Dg 21 ¼ RT RT

ð16Þ

3.2. Two-Suffix Margules model The Margules activity model, which was a thermodynamic model for the excess Gibbs free energy of a liquid mixture, was introduced in 1895 by Max Margules [12–14]. The expression for the excess Gibbs free energy of a binary solution could be given by:

gE ¼ x1  x2 ðA21 x1 þ A12 x2 Þ RT

ð6Þ

The activity coefficient of component 1 derived from Eq. (6) can be expressed as:

lnc1 ¼ ½A12 þ 2ðA21  A12 Þx1 x22 where A12 and A21 stand for the model parameters.

ð7Þ

G12 ¼ expða12  s12 Þ G21 ¼ expða12  s21 Þ

ð17Þ

In which a12 refers to the non-randomness of solution, extensive experiments show that the value of a12 ranges from 0.20 to 0.47, while there is less experimental values, a12 also can be set arbitrarily and a typical value is 0.3; Dg12 and Dg21 represent the cross interaction energy parameters value. 3.5. NRTL-SAC model The NRTL-SAC (NRTL Segment Activity Coefficient) model was first subsumed into polymer NRTL model used for polymers and oligomers systems. It consisted of two parts including a combinatorial part (cCi ) and a residual part (cRi ): [22–24]

4

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

lnci ¼ lncCi þ lncRi

ð18Þ

where the combinatorial part (c could be calculated by the FloryHuggins equation and the residual part (cRi ) could be obtained by the polymer NRTL model: C i)

lncRi ¼ lnclci ¼

X

h i r mi lnClcm  lnClc;i m

The activity coefficient of solute in pure solvent could be given by:

  /1 z h1 r1 þ q1 ln  þ /2 l1  l2  q1 lnðh1 þ h2 s21 Þ x1 2 /1 r2   s21 s12  þ h2 q1 h1 þ h2 s21 h2 þ h1 s12

lnc1 ¼ ln

ð19Þ

m

ð31Þ

The segment fraction /i and area fraction hi for component i could be given by:

where

P P  X xm0 Gmm0  xj Gjm0 sjm0 j xj Gjm sjm P lnClcm ¼ P þ smm0  Pj k xk Gkm k xk Gkm0 k xk Gkm0 m0

ð20Þ

ð32Þ

P P   xji Gjm sjm X xm0 i Gmm0 xji Gjm0 sjm0 Pj P lnClc;i þ smm0  Pj m ¼ k xki Gkm k xki Gkm0 k xki Gkm0 m0

xi r i /i ¼ P j xj r j

ð21Þ

xi q hi ¼ P i j xj q j

ð33Þ

P xl r jl xj ¼ P Pl i k xi r ki

ð22Þ

r ji xj;i ¼ P k r ki

And

li ¼

where Cm stands for the segment activity coefficient. For pure solvent system, the value of rm,i is 1 and the value of Clc,i m is zero. Therefore, the residual part (cR1) for a binary mixture could be expressed as:

Gij ¼ expðaij sij Þ sij ¼

g ij  g ii Dg ij ¼ RT RT

The combinatorial part (c

C 1 )

5.0

ð23Þ

where

ð24Þ

can be given by:

X /j / lncC1 ¼ ln 1 þ 1  r 1 x1 rj j

ð25Þ

r 1 x1 /1 ¼ P j r j xj

ð26Þ

4.5

"

lnc1 ¼

s21

4.0 3.5 3.0 2.5

Tm = 417.90 K ΔfusH = 25657.90 J·mol-1

2.0 1.5 1.0 0.5 0.0

The /j and ri are the segment fraction and total segment number, respectively. The activity coefficient of solute in pure solvent could be given by:

x22

ð34Þ

5.5

Heat Flow/(mW·mg-1)

P P  X xm G1m  xj Gjm sjm j xj Gj1 sj1 P lncR1 ¼ P þ s1m  Pj k xk Gk1 k xk Gkm k xk Gkm m

z ðr i  qi Þ  ðr i  1Þ 2



G21 x1 þ x2  G21

2 þ

s12  G12

ðx2 þ x1  G12 Þ2   r1 x1 þ x2 þ 1  r1 þ ln r 1 x1 þ r 2 x2 r 1 x1 þ r 2 x2

-0.5 300

350

400

450

500

T/K

#

Fig. 2. DSC spectra of himic anhydride.

ð27Þ 1,4-Dioxane NMP

3.6. Uniquac equation

DMF

gE g E ðcombinatorialÞ g E ðresidualÞ þ ¼ RT RT RT

intensity

The uniquac (universal quasichemical) model of Abrams and Prausnitz, which was based on statistical mechanical theory, was first proposed by Abrams in 1975 [25,26]. The expression of uniquac model consisted of a combinatorial part and a residual part. The uniquac equation for excess Gibbs free energy could be given by:

Ethanol Methanol Acetone n-Amyl acetate Isobutyl acetate n-Butyl acetate Isopropyl acetate

ð28Þ

n-Propyl acetate Ethyl acetate Methyl acetate Raw

where

g ðcombinatorialÞ ¼ RT E

m X i¼1

m / zX hi xi ln i þ xi qi ln xi 2 i¼1 /i

m m X X g E ðresidualÞ qi xi ln hj sji ¼ RT i¼1 j¼1

ð29Þ

10

20

30

40

50

60

70

2θ (°)

! ð30Þ

Fig. 3. XRD patterns of raw and recovered equilibrated himic anhydride from selected solvents.

5

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

Table 2 Values of experimental mole-fraction solubility of himic anhydride in thirteen solvents (x1), calculated solubility (x1cal), relative error (RD) and average relative deviation (ARD) at temperature T and pressure p = 0.1 MPa.a T/K

10 x1

10 x1cal

100RD

Margules

Wilson

NRTL

NRTL-SAC

uniquac

Margules

Wilson

NRTL

NRTL-SAC

uniquac

Methyl acetate 278.15 0.3579 283.15 0.4245 288.15 0.4850 293.15 0.5619 298.15 0.6439 303.15 0.7535 308.15 0.8514 313.15 0.9733 318.15 1.1027 323.15 1.2519 100ARD

0.3504 0.4157 0.4888 0.5697 0.6588 0.7561 0.8617 0.9758 1.0985 1.2300

0.3528 0.4149 0.4851 0.5640 0.6522 0.7505 0.8595 0.9798 1.1122 1.2574

0.3570 0.4185 0.4879 0.5657 0.6524 0.7488 0.8555 0.9730 1.1021 1.2436

0.3496 0.4137 0.4858 0.5663 0.6557 0.7543 0.8626 0.9809 1.1096 1.2492

0.3594 0.4195 0.4874 0.5638 0.6495 0.7454 0.8525 0.9719 1.1046 1.2519

2.12 2.07 0.77 1.39 2.32 0.35 1.21 0.25 0.38 1.75 1.26

1.44 2.26 0.02 0.36 1.30 0.39 0.94 0.66 0.87 0.44 0.87

0.27 1.41 0.60 0.66 1.33 0.61 0.47 0.04 0.05 0.66 0.61

2.32 2.55 0.16 0.77 1.83 0.12 1.31 0.78 0.63 0.21 1.07

0.42 1.18 0.49 0.32 0.87 1.06 0.13 0.15 0.17 0.01 0.48

Ethyl acetate 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 100ARD

0.2933 0.3375 0.4132 0.4840 0.5353 0.6320 0.7369 0.8379 0.9687 1.1008

0.2860 0.3420 0.4054 0.4766 0.5559 0.6436 0.7401 0.8455 0.9601 1.0843

0.2886 0.3423 0.4035 0.4728 0.5511 0.6390 0.7373 0.8467 0.9682 1.1024

0.2911 0.3443 0.4049 0.4735 0.5509 0.6377 0.7347 0.8428 0.9627 1.0954

0.2857 0.3405 0.4028 0.4734 0.5529 0.6417 0.7405 0.8498 0.9703 1.1025

0.2933 0.3375 0.4132 0.4840 0.5353 0.6320 0.7369 0.8379 0.9687 1.1008

2.47 1.32 1.89 1.53 3.85 1.84 0.44 0.91 0.88 1.50 1.66

1.58 1.41 2.36 2.30 2.95 1.10 0.06 1.05 0.05 0.15 1.30

0.74 2.01 2.00 2.16 2.91 0.90 0.29 0.58 0.62 0.49 1.27

2.57 0.87 2.50 2.17 3.28 1.53 0.49 1.42 0.17 0.16 1.52

0.06 2.24 2.12 2.50 2.44 0.43 0.63 0.47 0.38 0.21 1.15

n-Propyl acetate 278.15 0.2488 283.15 0.3030 288.15 0.3567 293.15 0.4139 298.15 0.4863 303.15 0.5653 308.15 0.6614 313.15 0.7606 318.15 0.8778 323.15 1.0090 100ARD

0.2472 0.2972 0.3543 0.4192 0.4922 0.5738 0.6644 0.7646 0.8746 0.9949

0.2500 0.2983 0.3537 0.4170 0.4888 0.5699 0.6613 0.7636 0.8777 1.0047

0.2509 0.2989 0.3539 0.4168 0.4883 0.5691 0.6602 0.7625 0.8769 1.0045

0.2493 0.2980 0.3539 0.4176 0.4897 0.5710 0.6621 0.7638 0.8768 1.0019

0.2524 0.2994 0.3535 0.4155 0.4862 0.5668 0.6582 0.7618 0.8790 1.0112

0.62 1.91 0.67 1.28 1.21 1.51 0.46 0.52 0.37 1.40 0.99

0.50 1.55 0.84 0.74 0.51 0.83 0.02 0.38 0.01 0.43 0.58

0.85 1.36 0.78 0.71 0.41 0.69 0.18 0.24 0.11 0.45 0.58

0.22 1.63 0.79 0.89 0.70 1.01 0.11 0.42 0.11 0.71 0.66

1.45 1.17 0.89 0.39 0.01 0.27 0.49 0.15 0.13 0.22 0.52

Isopropyl acetate 278.15 0.2104 283.15 0.2579 288.15 0.3002 293.15 0.3565 298.15 0.4175 303.15 0.4891 308.15 0.5693 313.15 0.6610 318.15 0.7684 323.15 0.8783 100ARD

0.2093 0.2523 0.3018 0.3582 0.4221 0.4940 0.5743 0.6635 0.7621 0.8707

0.2111 0.2529 0.3011 0.3564 0.4194 0.4911 0.5720 0.6632 0.7655 0.8799

0.2121 0.2536 0.3015 0.3564 0.4190 0.4902 0.5708 0.6618 0.7640 0.8786

0.2098 0.2520 0.3006 0.3564 0.4200 0.4922 0.5736 0.6651 0.7674 0.8814

0.2134 0.2541 0.3011 0.3552 0.4172 0.4881 0.5690 0.6612 0.7660 0.8850

0.53 2.16 0.55 0.48 1.11 1.00 0.87 0.38 0.81 0.87 0.88

0.32 1.94 0.32 0.03 0.47 0.41 0.48 0.34 0.37 0.18 0.48

0.80 1.66 0.45 0.03 0.37 0.24 0.27 0.12 0.57 0.04 0.45

0.31 2.31 0.16 0.02 0.61 0.64 0.75 0.62 0.13 0.35 0.59

1.43 1.46 0.33 0.37 0.07 0.20 0.06 0.03 0.31 0.76 0.50

n-Butyl acetate 278.15 0.2165 283.15 0.2592 288.15 0.3103 293.15 0.3675 298.15 0.4283 303.15 0.5049 308.15 0.5874 313.15 0.6832 318.15 0.7880 323.15 0.9082 100ARD

0.2143 0.2585 0.3094 0.3676 0.4336 0.5080 0.5913 0.6840 0.7867 0.8999

0.2159 0.2590 0.3088 0.3659 0.4312 0.5053 0.5892 0.6837 0.7898 0.9084

0.2169 0.2597 0.3091 0.3658 0.4306 0.5044 0.5880 0.6825 0.7887 0.9080

0.2162 0.2594 0.3092 0.3663 0.4314 0.5054 0.5889 0.6828 0.7881 0.9055

0.2180 0.2601 0.3087 0.3647 0.4290 0.5025 0.5864 0.6820 0.7905 0.9137

1.02 0.27 0.27 0.02 1.25 0.61 0.65 0.11 0.17 0.91 0.53

0.27 0.07 0.48 0.44 0.67 0.08 0.30 0.08 0.22 0.02 0.26

0.17 0.18 0.39 0.47 0.55 0.09 0.10 0.11 0.09 0.02 0.22

0.12 0.08 0.35 0.33 0.74 0.10 0.25 0.05 0.00 0.30 0.23

0.69 0.34 0.50 0.76 0.17 0.46 0.17 0.18 0.32 0.61 0.42

0.1965 0.2375 0.2849 0.3392 0.4011 0.4712 0.5501 0.6384

0.1983 0.2384 0.2848 0.3381 0.3992 0.4689 0.5478 0.6370

0.1985 0.2384 0.2845 0.3377 0.3987 0.4683 0.5475 0.6372

0.1980 0.2382 0.2847 0.3381 0.3994 0.4691 0.5481 0.6374

0.1995 0.2387 0.2842 0.3367 0.3972 0.4666 0.5460 0.6367

1.40 0.64 0.19 0.53 1.16 0.61 0.28 0.41

0.49 1.03 0.16 0.84 0.68 0.10 0.70 0.20

0.37 1.02 0.08 0.97 0.54 0.03 0.77 0.22

0.62 0.94 0.12 0.84 0.71 0.14 0.64 0.26

0.12 1.17 0.03 1.25 0.17 0.39 1.03 0.16

Isobutyl acetate 278.15 0.1992 283.15 0.2359 288.15 0.2843 293.15 0.3410 298.15 0.3965 303.15 0.4684 308.15 0.5517 313.15 0.6357

(continued on next page)

6

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

Table 2 (continued) T/K

10 x1

10 x1cal

100RD

Margules

Wilson

NRTL

NRTL-SAC

uniquac

Margules

Wilson

NRTL

NRTL-SAC

uniquac

0.7407 0.8475

0.7366 0.8455

0.7374 0.8499

0.7385 0.8525

0.7378 0.8503

0.7402 0.8579

0.55 0.24 0.60

0.45 0.28 0.49

0.30 0.60 0.49

0.39 0.33 0.50

0.07 1.23 0.56

n-Amyl acetate 278.15 0.1922 283.15 0.2307 288.15 0.2759 293.15 0.3274 298.15 0.3880 303.15 0.4547 308.15 0.5349 313.15 0.6258 318.15 0.7262 323.15 0.8374 100ARD

0.1898 0.2298 0.2761 0.3293 0.3902 0.4594 0.5375 0.6252 0.7232 0.8324

0.1911 0.2304 0.2759 0.3284 0.3887 0.4576 0.5359 0.6245 0.7244 0.8366

0.1917 0.2307 0.2759 0.3281 0.3881 0.4568 0.5351 0.6239 0.7245 0.8380

0.1912 0.2305 0.2760 0.3285 0.3887 0.4575 0.5357 0.6242 0.7240 0.8362

0.1925 0.2310 0.2757 0.3273 0.3869 0.4554 0.5338 0.6235 0.7258 0.8423

1.24 0.39 0.06 0.59 0.58 1.02 0.48 0.09 0.41 0.60 0.55

0.58 0.14 0.00 0.32 0.19 0.63 0.18 0.21 0.26 0.09 0.26

0.27 0.00 0.00 0.22 0.04 0.46 0.03 0.30 0.24 0.07 0.16

0.51 0.09 0.03 0.33 0.18 0.61 0.15 0.25 0.31 0.14 0.26

0.16 0.14 0.08 0.02 0.28 0.14 0.20 0.37 0.06 0.59 0.20

Mathanol 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 100ARD

0.0403 0.0504 0.0635 0.0781 0.1009 0.1261 0.1574 0.2009 0.2459 0.3105

0.0416 0.0517 0.0639 0.0790 0.0977 0.1213 0.1515 0.1917 0.2484 0.3404

0.0395 0.0503 0.0637 0.0804 0.1010 0.1265 0.1582 0.1976 0.2468 0.3086

0.0396 0.0503 0.0637 0.0802 0.1007 0.1262 0.1579 0.1975 0.2474 0.3110

0.0386 0.0498 0.0638 0.0810 0.1023 0.1284 0.1602 0.1989 0.2459 0.3026

0.0397 0.0504 0.0637 0.0802 0.1006 0.1260 0.1576 0.1972 0.2471 0.3109

3.28 2.50 0.68 1.22 3.14 3.83 3.74 4.59 1.02 9.62 3.36

2.15 0.24 0.37 2.97 0.10 0.35 0.51 1.65 0.34 0.62 0.93

1.88 0.17 0.27 2.75 0.18 0.07 0.31 1.68 0.61 0.14 0.81

4.20 1.15 0.43 3.80 1.38 1.80 1.79 0.98 0.03 2.54 1.81

1.54 0.03 0.34 2.71 0.30 0.11 0.10 1.87 0.49 0.13 0.76

Ethanol 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 100ARD

0.0216 0.0264 0.0354 0.0441 0.0560 0.0699 0.0872 0.1087 0.1350 0.1682

0.0228 0.0282 0.0349 0.0432 0.0534 0.0663 0.0829 0.1050 0.1366 0.1902

0.0214 0.0273 0.0348 0.0441 0.0555 0.0697 0.0871 0.1087 0.1355 0.1688

0.0218 0.0276 0.0349 0.0440 0.0551 0.0690 0.0861 0.1076 0.1346 0.1690

0.0210 0.0272 0.0349 0.0444 0.0561 0.0704 0.0879 0.1092 0.1348 0.1657

0.0213 0.0273 0.0348 0.0441 0.0555 0.0697 0.0871 0.1087 0.1354 0.1688

5.54 6.90 1.35 1.98 4.66 5.11 4.97 3.41 1.18 13.08 4.82

1.05 3.49 1.74 0.00 0.94 0.31 0.08 0.04 0.36 0.36 0.84

0.92 4.64 1.39 0.25 1.63 1.30 1.19 0.97 0.27 0.47 1.30

2.52 2.89 1.59 0.70 0.09 0.81 0.85 0.45 0.13 1.48 1.15

1.14 3.47 1.72 0.04 0.89 0.28 0.07 0.03 0.33 0.35 0.83

Acetone 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 100ARD

0.3946 0.4753 0.5594 0.6581 0.7759 0.8967 1.0595 1.2095 1.3819 1.5537

0.3926 0.4716 0.5618 0.6639 0.7786 0.9066 1.0484 1.2044 1.3753 1.5615

0.3961 0.4728 0.5607 0.6608 0.7742 0.9017 1.0445 1.2035 1.3796 1.5737

0.3960 0.4728 0.5609 0.6611 0.7744 0.9020 1.0446 1.2034 1.3791 1.5727

0.3959 0.4746 0.5642 0.6653 0.7785 0.9045 1.0439 1.1974 1.3655 1.5491

0.3972 0.4749 0.5635 0.6638 0.7766 0.9027 1.0426 1.1972 1.3671 1.5531

0.52 0.79 0.43 0.88 0.35 1.10 1.05 0.42 0.48 0.50 0.65

0.37 0.52 0.24 0.42 0.22 0.56 1.42 0.50 0.17 1.29 0.57

0.34 0.52 0.27 0.45 0.19 0.59 1.41 0.51 0.20 1.22 0.57

0.32 0.14 0.86 1.09 0.34 0.87 1.47 1.00 1.18 0.29 0.76

0.64 0.09 0.74 0.87 0.10 0.66 1.60 1.02 1.07 0.04 0.68

1,4-Dioxane 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 100ARD

0.7179 0.8357 0.9393 1.0660 1.2335 1.3647 1.5435 1.7269

0.7135 0.8261 0.9487 1.0814 1.2242 1.3774 1.5408 1.7149

0.7153 0.8240 0.9441 1.0760 1.2203 1.3774 1.5479 1.7320

0.7192 0.8269 0.9457 1.0762 1.2187 1.3739 1.5422 1.7243

0.7119 0.8231 0.9452 1.0786 1.2233 1.3797 1.5480 1.7284

0.7193 0.8272 0.9460 1.0762 1.2185 1.3735 1.5418 1.7242

0.60 1.16 0.99 1.44 0.75 0.93 0.17 0.69 0.84

0.35 1.40 0.50 0.94 1.07 0.94 0.28 0.29 0.72

0.19 1.05 0.68 0.95 1.20 0.67 0.08 0.15 0.62

0.83 1.51 0.63 1.18 0.82 1.10 0.29 0.09 0.81

0.20 1.02 0.71 0.96 1.21 0.65 0.11 0.16 0.63

1.1224 1.2635 1.4044 1.5577 1.7169 1.8953 2.0911 2.2514 2.4529

1.1160 1.2588 1.4087 1.5656 1.7291 1.8990 2.0754 2.2583 2.4477

1.1270 1.2615 1.4048 1.5571 1.7184 1.8889 2.0687 2.2580 2.4570

1.1267 1.2615 1.4050 1.5575 1.7188 1.8893 2.0689 2.2580 2.4566

1.1260 1.2613 1.4053 1.5580 1.7195 1.8899 2.0693 2.2579 2.4560

1.1265 1.2628 1.4074 1.5603 1.7214 1.8908 2.0685 2.2548 2.4499

0.58 0.37 0.31 0.51 0.71 0.20 0.75 0.30 0.21

0.41 0.16 0.03 0.04 0.09 0.34 1.07 0.29 0.17

0.38 0.16 0.05 0.01 0.11 0.32 1.06 0.29 0.15

0.32 0.17 0.07 0.02 0.15 0.29 1.04 0.29 0.12

0.36 0.05 0.22 0.17 0.26 0.24 1.08 0.15 0.12

318.15 323.15 100ARD

NMP 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15

7

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967 Table 2 (continued) T/K

323.15 100ARD DMF 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 100ARD

100RD

Margules

Wilson

NRTL

NRTL-SAC

uniquac

Margules

Wilson

NRTL

NRTL-SAC

uniquac

2.6479

2.6440

2.6660

2.6650

2.6637

2.6540

0.15 0.41

0.68 0.33

0.64 0.32

0.59 0.31

0.23 0.29

0.8087 0.9249 1.0568 1.2013 1.3506 1.5249 1.7067 1.8595 2.0810 2.3022 0.60

0.7985 0.9244 1.0604 1.2062 1.3616 1.5264 1.7004 1.8835 2.0758 2.2774 0.70

0.7997 0.9197 1.0514 1.1952 1.3513 1.5198 1.7009 1.8946 2.1008 2.3196 0.37

0.8067 0.9271 1.0583 1.2005 1.3538 1.5184 1.6945 1.8822 2.0817 2.2932 0.41

0.8050 0.9267 1.0589 1.2019 1.3555 1.5200 1.6955 1.8821 2.0800 2.2894 1.38

0.8260 0.9433 1.0701 1.2066 1.3530 1.5094 1.6759 1.8529 2.0406 2.2393

1.27 0.06 0.34 0.41 0.82 0.10 0.37 1.29 0.25 1.08

1.12 0.57 0.51 0.51 0.05 0.33 0.34 1.89 0.95 0.75

0.26 0.23 0.14 0.07 0.24 0.42 0.71 1.22 0.03 0.39

0.46 0.19 0.21 0.05 0.36 0.32 0.65 1.22 0.05 0.56

2.13 1.98 1.26 0.45 0.18 1.01 1.80 0.35 1.94 2.73

Standard uncertainty u: u(T) = 0.01 K, u(p) = 0.3 kPa; Relative standard uncertainty ur is ur(x1) = 0.03.

The volume parameter r and the surface of interaction q of selected solvents are obtained from Dortmund Data Bank [27], query system of Property Data [28] and previous literatures [29,30]. Values of r and q of himic anhydride are calculated by method of Bondi A [31]. In addition, two adjustable parameter s12 and s21 for each binary mixture can be given by characteristic energies Du12 and Du21 which are expressed as:



s12 ¼ exp  

s21 ¼ exp 

Du12 RT Du21 RT





 a  12  exp  T

ð35Þ

 a  21  exp  T

ð36Þ

0.12

0.12

0.10

0.10

0.08

0.08

0.06

0.06

0.04

0.04

0.02

0.02

x1

a

10 x1cal

10 x1

4. Results and discussion

280

290

4.1. DSC analysis of himic anhydride

4.2. XRD analysis XRD curves of raw and recovered equilibrated himic anhydride from selected solvents were shown in Fig. 3. From Fig. 3, no solvates or other polymorphic transformation have been formed during the dissolution process. Moreover, no other peaks were found indicating a high purity of the himic anhydride. 4.3. Solubility results Solubility data of himic anhydride in thirteen pure solvents was presented in Table 2 and shown graphically in Figs. 4 and 5. It was found that solubility of himic anhydride increased with the increment of temperature. The order of solubility in selected solvents

310

320

Fig. 4. Solubility of himic anhydride in seven kinds of acetates: j, Methyl acetate; , Ethyl acetate; , n-Propyl acetate; , Isopropyl acetate; , n-Butyl acetate; , Isobutyl acetate; , n-Pentyl acetate; Solid curve, calculated curves by the Wilson model.

x1

In this work, DSC analysis of himic anhydride was determined by DSC 214 Polyma (NETZSCH Scientific Instruments Trading (Shanghai) Co., Ltd). The result was shown in Fig. 2. Values of Tm and DfusH of himic anhydride are 417.90 K (literatures data: 416.15–417.15 K [32], 416.15 K [33,34]) and 25.66 kJmol1 (Ref. [34]: DfusH = 21.99 kJmol1) with the standard uncertainties of 0.5 K and 0.42 kJmol1, respectively. The Tm of himic anhydride is close to that of literatures while DfusH of himic anhydride is 16.69% bigger than that of literature. The difference of DfusH between literature data and author’s data may due to the source of himic anhydride and instrument of DSC.

300

T/K

0.25

0.25

0.20

0.20

0.15

0.15

0.10

0.10

0.05

0.05

0.00

280

290

300

310

320

0.00

T/K Fig. 5. Solubility of himic anhydride in 1,4-dioxane, NMP, acetone, DMF, methanol and ethanol: j, 1,4-Dioxane; , NMP; , Acetone; , DMF; , Methanol; , Ethanol; Solid curve, calculated curves by the Wilson model.

8

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

was NMP > DMF > 1,4-dioxane > DMK > MAC > EAC > NPAC > NBAC > IPAC > IBAC > NAAC > MtOH > EtOH. However, this order was different from the order of solvent polarity [35] (MtOH > EtOH > DMF > NMP > DMF > MAC > EAC > NPAC > NBAC > NAAC). It indicated that the polarity of solvent was not the only factor which could affect the solubility of himic anhydride. In order to reveal the solubility behavior of himic anhydride, the interaction energy Einter between himic anhydride and selected solvent was calculated by DMol3 module of Accelrys Material Studio 7.0. According to Mauricio A. Filippa and Estela I. Gasull [36], dissolution process includes three steps: Firstly, the bonds between adjacent solute molecules are broken. Secondly, some hollow spaces are produced in solvent. Thirdly, the hollow spaces are filled by solute molecules. Therefore, the Einter plays a key role in solubility behavior. The values of Einter are listed in Table 6. From Table 6, the values of Einter obey the following order: NMP > DMF > 1,4dioxane > DMK > MAC > EAC > NPAC > NBAC > IPAC > IBAC > NAAC > MtOH > EtOH. The order of Einter is in keeping with the solubility order. A higher Einter means a stronger interaction force and dissolution ability of himic anhydride in selected solvents [37]. The optimized structure diagrams of himic anhydride and selected solvents (methanol, ethyl acetate) are shown in Fig. 6.

root-mean square deviation (RMSD) were calculated to evaluate the solubility data and could be described as: [38,39]

RD ¼

x1  xcal 1 x1

ARD ¼

ð37Þ

 Pn x1 xcal 1  i¼1  x1 

ð38Þ

n

RMSD ¼

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uP u n cal 2 u ðx1  x1 Þ ti¼1

ð39Þ

n

where n stands for the number of experimental solubility points for each solvent. Values of RD and ARD are listed in Table 2. The regression parameters and corresponding root-mean-square deviation (RMSD) of five thermodynamic models are listed in Tables 3–5. The results show that the calculated solubility are in accordance with the experimental solubility values. The average values of 104 RMSD of five thermodynamic models are 7.45 (Margules), 4.59 (NRTL), 5.40 (NRTL-SAC), 5.32 (Wilson) and 6.07 (uniquac), respectively. Therefore, five thermodynamic models give good correlation with experimental solubility data.

4.4. Solubility correlation and calculation 4.5. Thermodynamic properties associated with the solution processes Solubility of himic anhydride was correlated by five thermodynamic models including the Two-Suffix Margules model, Wilson model, NRTL model, NRTL-SAC model and uniquac model. The relative deviation (RD), average relative deviation (ARD) and

In this work, standard partial molar thermodynamic properties including the Gibbs energy of dissolution (DG°), enthalpy change of dissolution (DH°) and entropy change of dissolution (DS°) were

a

b

Fig. 6. Diagrams of himic anhydride and (a) methanol; (b) ethyl acetate.

Table 3 The regression parameters and root-mean square deviation (RMSD) of the Two-Suffix Margules model and NRTL model. Solvents

Methyl acetate Ethyl acetate n-Propyl acetate Isopropyl acetate n-Butyl acetate Isobutyl acetate n-Amyl acetate Methanol Ethanol 1,4-Dioxane NMP Acetone DMF

Margules

NRTL

A12

A21

104RMSD

4g12

4g21

a12

104RMSD

0.5030 0.2501 0.0724 0.1097 0.0904 0.1874 0.2290 1.8532 2.4620 0.9433 2.1998 0.5388 1.5302

1.1735 1.2303 1.1738 1.3799 1.2165 1.2325 1.1463 6.2418 13.0016 0.0991 0.9579 0.2001 0.6950

10.24 10.77 6.41 4.60 3.60 2.70 2.79 10.28 7.38 10.19 8.02 6.46 12.36

8528.51 7491.12 6527.02 6613.06 6106.58 5888.19 5558.15 1313.35 3103.43 7399.81 2388.85 2817.97 1727.68

3792.24 3298.27 2895.32 2499.59 2509.81 2275.27 2149.62 6118.61 10378.11 4801.46 1423.70 3126.02 1160.61

0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.50 0.30 0.30 0.30 0.30 0.30

4.89 7.73 2.88 2.21 1.10 2.69 1.10 1.39 0.80 8.17 9.49 8.23 9.00

9

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967 Table 4 The regression parameters and root-mean square deviation (RMSD) of the NRTL-SAC model and Wilson model. Solvents

NRTL-SAC

Methyl acetate Ethyl acetate n-Propyl acetate Isopropyl acetate n-Butyl acetate Isobutyl acetate n-Amyl acetate Methanol Ethanol 1,4-Dioxane NMP Acetone DMF

Wilson

4g12

4g21

a12

10 RMSD

4k12

4k21

104RMSD

7877.15 7963.16 7557.88 7820.15 6391.42 6005.46 5320.63 849.29 3250.06 6297.18 2336.35 502.27 1366.60

679.94 720.34 765.89 312.02 769.77 605.05 594.69 6205.95 62114.80 1651.92 1108.54 937.76 727.71

0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.30 0.30 0.85 0.30 0.60 0.30

7.64 9.20 3.91 3.14 1.51 2.34 1.41 3.05 0.93 9.62 9.11 9.07 9.33

4095.82 3129.87 2399.19 1957.18 1755.68 1524.89 1185.89 2128.74 3828.59 4912.11 2157.56 3340.98 6154.43

44283.63 47349.37 38080.89 40573.66 41013.47 35052.02 30054.54 2213.55 1926.25 42343.67 1503.01 2594.58 47361.05

6.56 8.01 3.12 2.39 1.42 2.37 1.34 1.50 0.47 8.99 9.79 8.45 14.70

4

Table 5 Values of the volume parameter (r), surface of interaction (q), regression parameters and root-mean square deviation (RMSD) of the uniquac model. Solvent

Uniquac

Methyl acetate Ethyl acetate n-Propyl acetate Isopropyl acetate n-Butyl acetate Isobutyl acetate n-Amyl acetate Methanol Ethanol 1,4-Dioxane NMP Acetone DMF himic anhydride

r

q

a12

a21

104RMSD

2.8042 3.4786 4.153 4.15227 4.8274 4.8266 5.50165 1.4311 2.1055 3.1854 3.98088 2.5735 3.0857 7.4853

2.576 3.116 3.656 3.652 4.196 4.192 4.736 1.432 1.972 2.64 3.2 2.336 2.736 5.504

313.98 282.97 245.88 249.03 223.32 215.55 196.89 246.58 116.20 196.94 122.62 37.336 112.03

212.16 196.85 177.98 170.26 162.33 153.98 144.09 12.497 50.643 173.03 191.91 53.051 166.37

3.73 7.17 2.42 2.78 2.42 4.15 1.80 1.44 0.46 8.18 8.01 8.64 27.69

Table 6 Values of solvent polarity and interaction energy (Einter) calculated by Dmol3.a,b

a b

Polarity (water 100)

EAB (Ha)

EA/EB (Ha)

Einter (kJmol1)

Methyl acetate Ethyl acetate n-Propyl acetate Isopropyl acetate n-Butyl acetate Isobutyl acetate n-Amyl acetate Methanol Ethanol 1,4-Dioxane NMP Acetone DMF himic anhydride

29 23

841.1993 880.4777 919.7507 919.7557 959.0149 959.0261 998.2972 688.6416 727.9197 880.4299 898.6869 766.0039 821.3255

268.1900 307.4686 346.7423 346.7475 386.0066 386.0180 425.2891 115.6346 154.9128 307.4199 325.6734 192.9945 248.3147 573.0047

12.4110 11.7924 9.6836 9.2187 9.4620 9.0840 8.9887 6.1114 5.8270 13.8621 23.2330 12.5459 16.2949

76.2 65.4 16.4 36 35.5 40.4

-2

-3

lnx1

Solvents

-1

-4

-5

-6

Solvent polarity were taken from Ref. [35]. 1 Ha = 2625.5 kJmol1.

0.0031

0.0032

0.0033

0.0034

0.0035

0.0036

K/T calculated to evaluate the behavior the dissolution process. The expression of DG° can be given by: [40,41] 

DG ¼ RTlnx1

ð40Þ

Fig. 7. Plot of lnx1 against 1/T for himic anhydride in thirteen solvents: j, Methyl acetate; , Ethyl acetate; , n-Propyl acetate; , Isopropyl acetate; , n-Butyl acetate; , Amyl acetate; , Isoamyl acetate; , NMP; , Acetone; , DMF; , MtOH; , EtOH; ,1,4-Dioxane.

10

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

Table 7 Values of a, b, R2 and standard partial molar thermodynamic properties for the solution process of himic anhydride in pure solvents under 0.1 MPa.a solvents

a

b

R2

4G° kJmol1

4H° kJmol1

4S° J(molK)1

Methyl acetate Ethyl acetate n-Propyl acetate Isopropyl acetate n-Butyl acetate Isobutyl acetate n-Amyl acetate NMP Acetone DMF MtOH EtOH 1,4-Dioxane

5.62437 5.97247 6.27247 6.34689 6.44742 6.54062 6.63160 3.99065 6.67870 4.98593 9.14645 8.63517 5.43928

2490.96789 2644.91155 2770.11361 2837.73013 2859.56458 2910.23260 2945.29548 1715.78714 2754.75103 2084.52533 4091.08294 4118.39562 2325.14494

0.9997 0.9987 0.9997 0.9998 1.0000 0.9999 0.9999 0.9995 0.9997 0.9996 0.9982 0.9993 0.9993

6.7992 7.2571 7.4950 7.8732 7.8100 8.0008 8.0549 4.3680 6.3369 4.9628 11.3934 12.8516 5.8631

20.7107 21.9906 23.0316 23.5937 23.7753 24.1965 24.4881 14.2656 22.9038 17.3314 34.0145 34.2416 19.3320

46.7627 49.6569 52.1512 52.7699 53.6058 54.3807 55.1371 33.1795 55.5287 41.4545 76.0463 71.7954 45.2238

Standard uncertainty u: u(4G°) = 0.22 kJmol1; u(4H°) = 0.43 kJmol1; u(4H°) = 0.92 Jmol1K1.

a

The solubility of solute in solvent (x1), as a function of absolute temperature T, can be fitted by the following equation based on least squares.

lnx1 ¼ a þ

b T

ð41Þ

where a and b are equation parameters. The DG°, DH° and DS° can be calculated by the coefficient a and b, which can be expressed as:

   b DG ¼ RTlnx1 ¼ RT a þ T

properties of dissolution process would be useful for the purification and crystallization of himic anhydride. Acknowledgments This report was financially supported by the Science and technology project of Henan province (No. 182102210002) and Key Research Projects of Henan Higher Education Institutions (No. 19A530004).

ð42Þ Appendix A. Supplementary data

@lnx1 DH ¼ RT ¼ R  b @lnT 



DS ¼

    DH  DG @lnx1 ¼ R þ lnx1 ¼ R  a T @lnT

ð43Þ

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jct.2019.105967.

ð44Þ

References

where R is the universal gas constant (8.314 Jmol1K1); values of a and b can be obtained from the plot of lnx1 against 1/T (Fig. 7). Thermodynamics properties for himic anhydride dissolved in selected solvents including DG° (298.15 K), DH°, DS° are listed in Table 7. The values of a, b, and R2 (R-squared) are also listed in Table 7. From Table 7, all values of DG° are positive and have an exactly contrary order with the solubility order. The values of DH° and DS° are always positive. 5. Conclusion Solubility of himic anhydride in thirteen pure solvents was measured by the gravimetric method at different temperatures under 0.1 MPa. Results show that solubility of himic anhydride increases with increment of temperature. The general order of himic anhydride solubility is NMP > DMF > 1,4-dioxane > DMK > MAC > EAC > NPAC > NBAC > IPAC > IBAC > NAAC > MtOH > EtOH. The interaction energy Einter between himic anhydride and selected solvents was calculated by of Accelrys Material Studio DMol3 module to explain the solubility behavior. Solubility of himic anhydride in selected solvents increases as the Einter increases. Five activity coefficient models including the Two-Suffix Margules model, Wilson model, NRTL model, NRTL-SAC model and uniquac model were employed to correlate the solubility, all selected thermodynamic models give good correlation with experimental solubility data. Moreover, standard partial molar thermodynamic properties for himic anhydride dissolved in selected solvents were calculated in this work, and values of DG°, DH° and DS° are always positive. Solubility data, selected thermodynamic models and thermodynamic

[1] W.M. Haynes, Handbook of Chemistry and Physics 97th, CRC Press, Boca Raton, 2016. [2] Sci-Finder, Predicted properties. https://origin-scifinder.cas.org/scifinder/ view/scifinder/scifinderExplore.jsf, 2019 (accessed 11 July 2019). [3] S.J. Lee, T.H. Kim, J.S. Kim, J.Y. Lee, R. Kang; S.J. Choi, Patent, US2011/45405 A1, 2011. [4] Z. Yang, H. Zhang, H. Lv, S. Chen, Z. Han, A process for preparing bicyclo[2.2.1] heptane-2,3-dicarboxylic anhydride, Patent, CN101696200A, 2010. [5] C.D. Edlin, J. Faulkner, P. Quayle, Catalyst economy. Part 2: sequential metathesis—Kharasch sequences using the Grubbs metathesis catalysts, Tetrahedr. Lett. 47 (2006) 1145–1151, https://doi.org/10.1016/j. tetlet.2005.12.018. [6] P.S. Zhang, C. Zhang, R. Zhao, Y.M. Wan, Z.K. Yang, R.Y. He, Q.L. Chen, T. Li, B.Z. Ren, Measurement and correlation of the solubility of florfenicol form A in several pure and binary solvents, J. Chem. Eng. Data 63 (2018) 2046–2055, https://doi.org/10.1021/acs.jced.8b00043. [7] Y. Yu, F. Zhang, X.Q. Gao, L. Xu, G.J. Liu, Experiment, correlation and molecular simulation for solubility of 4-methylphthalic anhydride in different organic solvents from T = (278.15 to 318.15) K, J. Mol. Liq. 275 (2019) 768–777, https:// doi.org/10.1016/j.molliq.2018.10.158. [8] Y. Yu, X.Q. Gao, Z. Zang, L. Xu, G.J. Liu, Solid-liquid equilibrium for the ternary 2-naphthaldehyde + 2-methyl-1,4- naphthoquinone + ethanol system: determination, correlation and molecular simulation, J. Mol. Liq. 284 (2019) 131–138, https://doi.org/10.1016/j.molliq.2019.03.104. [9] Y.M. Wan, P.S. Zhang, H.X. He, J. Sha, K.P. Yang, T. Li, B.Z. Ren, Solidliquid equilibrium solubility, thermodynamic properties, and molecular simulation of phenylphosphonic acid in 15 pure solvents at different temperatures, J. Chem. Eng. Data (2019), https://doi.org/10.1021/acs.jced.9b00362 (In press). [10] D. Li, D.Z. Liu, F.A. Wang, Solubility of 4-methylbenzoic acid between 288 K and 370 K, J. Chem. Eng. Data. 46 (2001) 234–236, https://doi.org/ 10.1021/je000202a. [11] J. Chen, Z. Zeng, W. Xue, D. Wang, Y. Huang, Determination and correlation of solubility of decahydropyrazino[2,3-b]pyrazine in methanol, ethanol, and 2propanol, Ind. Eng. Chem. Res. 50 (2011) 11755–11762, https://doi.org/ 10.1021/ie2012714. [12] M. Margules, Über die Zusammensetzung der gesättigten Dämpfe von Misschungen Sitzungsherichte, Akad Wiss Vienna 104 (1895) 1243–1278. [13] M. Vatani, M. Asghari, G. Vakili-Nezhaad, Application of genetic algorithm to the calculation of parameters for NRTL and Two-Suffix Margules models in

Y. Wan et al. / J. Chem. Thermodynamics 141 (2020) 105967

[14]

[15]

[16] [17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

ternary extraction ionic liquid systems, J. Ind. Eng. Chem. 18 (2012) 1715– 1720, https://doi.org/10.1016/j.jiec.2012.03.008. A. Senol, M. Bilgin, B. Baslioglu, G. Vakili-Nezhaad, Modeling phase equilibria of ternary systems (water + formic acid + ester or alcohol) through UNIFACoriginal, SERLAS, NRTL, NRTL-modified, and three-suffix Margules: parameter estimation using genetic algorithm, Fluid Phase Equilib. 429 (2016) 254–265, https://doi.org/10.1016/j.fluid.2016.08.041. Grant M. Wilson, Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc. 86 (2) (1964) 127–130, https://doi.org/ 10.1021/ja01056a002. I. Standley, Sandler, Chemical and Engineering Thermodynamics, third ed., Chemical Industry Press, Beijing, 2002. R. Zhao, M. Yu, P.S. Zhang, T. Li, B.Z. Ren, Solubility and dissolution characteristics of capecitabine in pure lower alcohols and water with methanol mixture solvents at atmospheric pressure and different temperatures, Fluid Phase Equilib. 460 (2018) 23–35, https://doi.org/ 10.1016/j.fluid.2017.12.024. P.S. Zhang, R. Zhao, C. Zhang, T. Li, B.Z. Ren, Solubility determination and correlation of cyromazine in sixteen pure solvents and mixing properties of solutions, Fluid Phase Equilib. 475 (2018) 77–88, https://doi.org/10.1016/j. fluid.2018.07.024. H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AICHE J. 135 (1968) 135–144, https://doi.org/ 10.1002/aic.690140124. H. Renon, J.M. Prausnitz, Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures, Ind. Eng. Chem Process. Des. Dev. 8 (1969) 413–419, https://doi.org/10.1021/i260031a019. X.B. Li, C.B. Du, Y. Cong, J. Wang, H.K. Zhao, Solubility determination and thermodynamic modeling of paclobutrazol in nine organic solvents from T = (278.15 to 318.15) K and mixing properties of solutions, J. Chem. Thermodyn. 104 (2017) 261–273, https://doi.org/10.1016/j.jct.2016.09.038. C.C. Chen, Y.H. Song, Solubility modeling with a nonrandom two-liquid segment activity coefficient model, Ind. Eng. Chem. Res. 43 (2004) 8354–8362, https://doi.org/10.1021/ie049463u. C.C. Chen, P.A. Crafts, Correlation and prediction of drug molecule solubility in mixed solvent systems with the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, Ind. Eng. Chem. Res. 45 (2006) 4816–4824, https://doi.org/10.1021/ie051326p. M. Valavi, M. Svard, A.C. Rasmuson, Prediction of the solubility of mediumsized pharmaceutical compounds using a temperature-dependent NRTL-SAC model, Ind. Eng. Chem. Res. 55 (2016) 11150–11159, https://doi.org/10.1021/ acs.iecr.6b02609. D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems, AiChE J. 21 (1975) 116–128, https://doi.org/10.1002/aic.690210115. G. Maurer, J.M. Prausnitz, On the derivation and extension of the uniquac equation, Fluid Phase Equilib. 2 (1978) 91–99, https://doi.org/10.1016/03783812(78)85002-X.

11

[27] Dortmund Data Bank, Group Assignment – Online Group Assignment for UNIFAC and PSRK. http://www.ddbst.com/unifacga.html, 2019 (accessed in 13 January 2019). [28] Fluid Phase Equilibrium, Pure Material Data Query System. www.equilibria.cn, 2019 (accessed in 13 January 2019). [29] J.M. Prausnitz, R.N. Lichtenthaler, E. Azevedo, Molecular Thermodynamics of Fluid-phase Equilibria, third ed., Prentice-Hall, New Jersey, 1998. [30] T. Magnussen, P. Rasmussen, A. Fredenslund, UNIFAC parameter table for prediction of liquid-liquid equilibriums, Ind. Eng. Chem Process Des. Dev. 20 (1981) 331–339, https://doi.org/10.1021/i200013a024. [31] A. Bondi, van der Waals volumes and radii, J. Phys. Chem. 68 (1964) 441–451, https://doi.org/10.1021/j100785a001. [32] T. Fujiware, Y. Shinba, K. Sugimoto, Y. Mori, M. Tomikawa, Novel high Tg low dielectric constant coil-shaped polymer, J. Photopolym. Sci. Technol. 18 (2005) 289–295, https://doi.org/10.2494/photopolymer.18.289. [33] S.F. Alfred, Z.M. Al-Badri, A.E. Madkour, K. Lienkamp, G.N. Tew, Water soluble poly(ethylene oxide) functionalized norbornene polymers, J. Polym. Sci., Part A: Polym. Chem. 46 (2008) 2640–2648, https://doi.org/10.1002/pola.22594. [34] R.E. Pincok, K.R. Wilson, T.E. Kiovsky, Thermal Isomerization in Polycrystalline exo- and endo-5-Norbornene-2,3-dixarboxylic anhydrides, J. Am. Chem. Soc. 89 (1967) 6890–6897, https://doi.org/10.1021/ja01002a015. [35] L.M. Smallwood, Handbook of Organic Solvent Properties, Halsted Press, New York, 1996. [36] M.A. Filippa, E.I. Gasull, Ibuprofen solubility in pure organic solvents and aqueous mixtures of cosolvents: interactions and thermodynamic parameters relating to the solvation process, Fluid Phase Equilib. 354 (2013) 185–190, https://doi.org/10.1016/j.fluid.2013.06.032. [37] L. Zhou, Q. Yin, Z. Guo, H. Lu, M. Liu, W. Chen, B. Hou, Measurement and correlation of solubility of ciclesonide in seven pure organic solvents, J. Chem. Thermodyn. 105 (2017) 133–141, https://doi.org/10.1016/j.jct.2016.10.014. [38] P.S. Zhang, R. Zhao, C. Zhang, Y.M. Wan, T. Li, B.Z. Ren, Thermodynamic analysis and correlation of cyromazine in three (acetic acid, propanoic acid or ethylene glycol + water) binary solvents at different temperatures, J. Mol. Liq. 272 (2018) 158–169, https://doi.org/10.1016/j.molliq.2018.09.047. [39] T. Li, Y. Li, Y.H. Li, B.Z. Ren, Solubilities of a-D-glucose in water + (acetic acid or propionic acid) mixtures at atmospheric pressure and different temperatures, J. Chem. Thermodyn. 65 (2013) 7–10, https://doi.org/10.1016/j. jct.2014.10.013. [40] J.S. Urieta, F. Gibanel, J.F. Martínez-López, J.I. Pardo, A.M. Mainar, Solubilities of gases in cycloethers. The solubility of 13 nonpolar gases in 2,5dimethyltetrahydrofuran at 273.15 to 303.15 K and 101.32 kPa, J. Chem. Thermodyn. 132 (2019) 306–315, https://doi.org/10.1016/j.jct.2018.12.037. [41] E. Wilhelm, R. Battino, R.J. Wilcock, Low-pressure solubility of gases in liquid water, Chem. Rev. 77 (1977) 219–262, https://doi.org/10.1021/cr60306a003.

JCT 2019-452