Three years of Galileo dust data

Three years of Galileo dust data

Planet. Space Sci.. Vol. 43, No. 8, pp. 953-969, 1995 Copyright 0 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0032-0633/95...

2MB Sizes 0 Downloads 8 Views

Planet. Space Sci.. Vol. 43, No. 8, pp. 953-969, 1995 Copyright 0 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0032-0633/95 $9.50+0.00

Pergamon

0032-0633(94)00234-7

Three years of Galileo dust data E. Griin,’ M. Baguhl,’ N. Diivine,’ H. Fechtig,’ D. P. Hamilton,’ M. S. Hannert J. Kissel,’ B.-A. Lindhlad,j D. Linkert,’ G. Linkert,’ I. lMann,4 J. A. M. McDonuell,5 G. E. MorfilL6 C. Polanskey,2 R. Riemann,’ G. Schwehm,7 N. Siddique,’ P. Staubach’ and H. A. Zook’ ’ Max-Planck-Institut fur Kernphysik, 69029 Heidelberg, Germany ‘Jet Propulsion Laboratory, Pasadena, CA 91109, U.S.A. ’ Lund Observatory, 221 Lund, Sweden 4 Max-Planck-Institut fiir Aeronomie, 37191 Katlenburg-Lindau, Germany ‘University of Kent, Canterbury CT2 7NR, U.K. 6Max-Planck-Institut ftir Extraterrestrische Physik, 85748 Garching, Germany ’ ESTEC, 2200 AG Noordwijk, The Netherlands ‘NASA Johnson Space Center, Houston, TX 77058, U.S.A. Received 14 September 1994 ; revised 7 November 1994 ; accepted 9 December 1994

Ah&act. From its launch :in October 1989 until the end of 1992, the Galileospacecraft traversed interplanetary space from Venus to the arsteroid belt and successfully executed close flybys of Venus, the Earth, and the asteroid Gaspra. The dust instrument has been operating most of the time since it was switched on in December 1989. Except for short time intervals near Earth, data from the instrument were received via occasional (once per week to once per month) memory read outs containing 282-818 bytes of data. All events (impacts or noise events) were classifjled by an onboard program into 24 categories. Over the three-year time span, the dust detector recorded 469 “big” dust impacts. These were counted in 21 of the 24 event categories. The three remaining categories of very low amplitude events contain mostly noise events. The impact rate varied from 0.2 to 2 impacts per day depending on heliocentric distance and direction of spacecraft motion with respect to the interplanetary dust cloud. Because the average data transmission rate was very low, some data were not received on the ground. Complete data sets for 358 “big” impacts were received, but the other 111 “big” impacts were only counted. The observed impact rates are compared with a model of the meteoroid complex. Introduction The Galileo Dust Detector sensor on board

System (DDS) and the twin UZysses are highly sensitive multi-coinci-

Correspondence to : E. Grtin

dence impact ionization detectors which have been described in detail by Grtin et al. (1992c, d). In addition, data from the Galileo dust experiment have been published at various stages of the mission. Initial measurements and instrument performance are presented by Grtin et al. (1992a, b) and Baguhl et al. (1992). Grtin et al. (1994) discuss the possibility that some dust impacts may have originated from comet Shoemaker-Levy 9. Detection of interstellar dust by the Galileo dust instrument is described by Baguhl et al. (1994). Dust measurements during flybys of comets and asteroids are considered by Riemann and Grtin (1992) and Hamilton and Burns (1992). Divine (1993) used the first year and a half of Galileo data as input to his interplanetary meteoroid model. This is the second paper in a three paper set dedicated to presenting both raw and reduced dust impact data for analysis by researchers external to the Galileo and Ulysses Dust Teams. Paper I (Grtin et al., 1995b) gives details on the reduction process of Galileo and Ulysses dust data and Paper III (Grtin et al., 1995a) contains the first two years of Ulysses dust data. The current paper presents Galileo dust impact data from December 1989 to the end of 1992. The main data products are a table of the impact rates of all “big” impacts and a table of both raw and reduced data of all “big” impacts received on the ground. The information presented in these three papers is equivalent to data which we are submitting to the various data archiving centers (Planetary Data System, NSSDC, etc.). Mission and instrument operations During its initial phase the Galileo mission explored the solar system between Venus (0.7 AU) and the asteroid

E. Griin et al. : Three years of Galilro dust data Table 1. Orbital elements of the Galileo trajectory until the end of 1992 (1 AU = 149. 597,871 km)

from launch

Valid time range (error < 700,000 km)

Orbital elements

Earth to Venus Epoch Perihelion Eccentricity Inclination Long. of asc. node Arg. of perihelion Mean anomaly True anomaly

1989Nov.9 16:30:56 0.66769 AU 0.19775 4.3260’ 24.70’ 184.80’ 201.57” 194.82”

1989-36000:00 to 1990-041 0o:oo

Venus to Earth I Juditer

-2

-1

0

1

2

3

4

5

Fig. 1. Interplanetary trajectory of the Galileo spacecraft (solid) shown with the orbits of Venus, Earth and Jupiter (dashed). Planetary flybys are indicated and the tick marks correspond to 100 days of orbital motion

Epoch Perihelion Eccentricity Inclination Long. of asc. node Arg. of perihelion Mean anomaly True anomaly

1990 Apr. 30 00 : 00 : 00 0.69785 AU 0.29445 199&041 0o:oo 3.3818” to 75.89’ 1990-34200:oo 106.70’ 63.862” 97.819”

Earth I to Earth II

belt (2.3 AU) ; its orbit is shown in Fig. 1. Orbital elements, which match the actual GaIileo interplanetary trajectory to an accuracy of 700,000 km, are provided in Table 1. After launch on October 18, 1989, Galileo flew to Venus which it passed on February 10, 1990. On December 8, 1990 Galileo swung by the Earth which sent it onto an orbit with an aphelion in the asteroid belt. After returning to Earth two years later, Galileo obtained enough energy to reach Jupiter in December 1995. The Galileo mission and spacecraft are described by Johnson et al. (1992) and D’Amario et al. (1992). The GaZiZeo spacecraft is a dualspinning spacecraft with its antenna pointed antiparallel to the spin vector. During most of the mission, the antenna pointed approximately towards the Sun ; deviations from the Sun pointing are shown in Fig. 2. In 1991 and 1992, the spacecraft was repeatedly turned away from the Sun in efforts to cool, and thereby free, the spacecraft high gain antenna which failed to deploy in April 199 1. Unfortunately, these attempts were unsuccessful. The dust detector is mounted on the spinning section of the spacecraft and the sensor axis is offset by an angle of 55” with respect to the positive spin axis (opposite to the antenna direction). Because of the spacecraft spin and the 140” opening angle of the sensor, the dust detector is always able to sense particles that are within 15” of the positive spin axis. Over a complete rotation cycle, all angles within 125” of the spin axis are sampled. The rotation angle is defined as follows. First, project the dust detector axis onto a plane perpendicular to the spacecraft spin axis. The rotation angle (ROT) is measured in this plane with 0” defined as closest to ecliptic north. For both Ulysses and Galileo, 90” is close to the direction in which particles on prograde uninclined circular orbits move ; with this pointing, the dust detectors are most sensitive to particles on retrograde orbits. During the initial portion of the mission there were rather long time periods when no sector (rotation angle) information was provided by the spacecraft to the instruments. Therefore, during these

Epoch Perihelion Eccentricity Inclination Long. of asc. node Arg. of perihelion Mean anomaly True anomaly

1991 Sep. 10 12:00:00 0.90427 AU 0.43029 4.5473” 255.87” 223.14”’ 119.42” 151.68”

199&342 00 : 00 to l992~344oo:oo

Post Earth II orbit Epoch Perihelion Eccentricity Inclination Long. of asc. node Arg. of perihelion Mean anomaly True anomaly

1992 Dec. 11 20 : 08 : 20 0.98246 AU 0.68756 1992-344 00 : 00 1.5228” to 255.91” 1992-36500:00 186.49” 359.73” 358.01’

periods the direction of dust impacts could not be determined. The Galileo spacecraft returns dust impact data in two

ways. When the spacecraft is close enough to the Earth to support high data rates, data from the dust experiment are received nearly continuously at a rate of 24 bits per second as part of the Low Rate Science (LRS) telemetry. This LRS data were available during a four-day initial check-out period in December 1989 and during 2 twomonth periods around both Earth flybys in December 1990 and December 1992. During the remainder of the time, data from the dust instrument were transmitted as instrument memory read-outs (MROs). The MROs returned event data which had accumulated over time in the instrument memory. The MROs were obtained during intervals of contact with the Deep Space Network (DNS), occurrences of which varied from once every few days to once per month. Initially, a MRO contained 14 instrument data frames (with each frame comprising the complete data set of an impact or noise event, consisting of 128 bits, plus ancillary and engineering data). In June 1990, the

E. Griin et al. : Three years of (Galileodust data Longitude deviation [degl

955

60' -60:

Latitude deviation [degl

90~~'~~~~'~~~~'~~~~'~~~~'~~.~1~~~~~ 60: 30:

1

0:

!_”

I

-30' -601 -9o~'I~~'~I"~~I"~.I~~"~.".,~."' 1990.0 1990.5 1991.0 1991.5

1992.0

1992.5

1993.0

Time in days of 1990

Fig. 2. Spacecraft attitude : deviation of the high gain antenna pointing (i.e. negative spin axis) from the Sun direction. The angles are given in a coordinate system referenced to the mean ecliptic and equinox of 1950.0

onboard program was changed to increase the size of a MRO from 14 to 40 instrurnent data frames. Significant mission and dust instrument events are listed in Table 2. The dust instrument was switched on three weeks after launch, after which dust measurements and noise tests commenced. In initial noise tests, the dust instrument was set to its highest sensitivity state and the noise environment was characterized. During most of the remaining time, the instrument was kept in a state where approximately 10 clearly identifiable noise events occurred per day. During fllybys of the Earth and Venus, however, noise rates were strongly enhanced (Baguhl et al., 1992). Several anomalies on board the Galileo spacecraft caused the dust instrument to be unable to collect data for a total of 176 days. The nominal channeltron high voltage (HV step 4 = 1250 V) could not be set because of unexpected noise which was also problematic for the Ulysses detector. It is assumed that the nearby r.adioactive thermal generators (RTGs) are responsible for this noise, although other reasons cannot be excluded. During ground tests (without RTGs) no such noise was observed. Temporary noise sources with external causes include energetic particles from solar flares and from planetary radiation belts (Baguhl et al., 1992, 1994). Figures 3a and b show the noise rate during each of the Earth flybys. High count rates (about 1 noise event per second) were encountered for about 30 min during the 1990 crossing of the radiation belts. As a consequence, during the second Earth encounter the sensitivity of the measurement channels was reduced by two steps for the 2 h around closest approach. Enhanced noise rates were recorded for more than 10 h around the 1992 closest approach and, despite the reduction in the sensitivity, significant noise was still recorded in the hour around closest approach. Examination of the data revealed that during both crossings of the Earth’s radiation belts. noise events were recorded in low-amplitude event categ;ories which normally contain only dust impacts.

With Ulysses, the time of an impact or noise event is recorded with a 2 s accuracy. Galileo, however, cannot always return such accurate timings because of its crippled antenna. During periods of low rate science transmission, the instrument time resolution was set to “short time” which is defined as 0.67 s. During periods of MRO transmission, however, the time resolution was changed to “long time” which was initially set to 1.1 h but redefined by the reprogramming in June 1990 to 4.3 h. The “longtime” mode is necessary when the interval between subsequent MROs is long (> 170 s ; the memory location where the time is stored is an 8 bit word allowing the identification of only 256 unique times). The definition of long time was changed to the larger value in order to determine uniquely the time interval during which each impact occurred even if subsequent MROs are a month apart.

Impact events All events, dust impacts and noise, are classified into one of 24 different categories (6 amplitude ranges and 4 event classes) and counted in 24 corresponding accumulators (Paper I). Most of the accumulators are relatively free from noise; except for extreme situations, such as radiation belt crossings, they count only real impacts. Only the low amplitude and class categories-AC01 (event class 0, amplitude range l), AC1 1, and AC02-are strongly contaminated by noise. We call the dust particles detected in the noise-free accumulators “big” impacts. The search for an analysis of true “small” impacts in the noisy categories of Galileo events (cf. Baguhl et al. (1993) for Ulysses data) is forthcoming. The situation is more complicated than for Ulysses because many of the measurements in the noisy categories could not be transmitted to Earth before they were overwritten. Table 3 displays the number of “big” dust impacts

E. Griin et al. : Three years of Gulileo dust data

956 Table 2. Galileo mission and dust detector Yr-DOY

Date

89-29 1 89-361 89-362 89-362

(18 (27 (28 (28

1989) 1989) 1989) 1989)

19: 18 17:20 17:20

89-363 89-363 89-364 89-365 89-365 90-009 90-04 1 90-047 90-176 90-306 90-312 90-316 90-318 90-319 90-342 90-346 90-347 90-349 90-365 91-121 91-123 91-190 91-198 91-201 91-217 91-228 91-302 91-337 91-340 91-350 92-023 92-028 92-065 92-092 92-097 92-107 92-308 92-310 92-328 92-336 92-338 92-339 92-343 92-343 92-343 92-349 92-354

(29 Dec. 1989) (29 Dec. 1989) (30 Dec. 1989) (31 Dec. 1989) (31 Dec. 1989) (9 Jan. 1990) (10 Feb. 1990) (16 Feb. 1990) (25 June 1990) (5 Nov. 1990) (8 Nov. 1990) (12 Nov. 1990) (14 Nov. 1990) (15 Nov. 1990) (8 Dec. 1990) (11 Dec. 1990) (12 Dec. 1990) (14 Dec. 1990) (31 Dec. 1990) (1 May 1991) (3 May 1991) (9 July 1991) (17 July 1991) (20 July 1991) (13 Aug. 1991) (16 Aug. 1991) (30 Oct. 1991) (3 Dec. 1991) (6 Dec. 1991) (16 Dec. 1991) (23 Jan. 1992) (28 Jan. 1992) (5 Mar. 1992) (2 Apr. 1992) (6 Apr. 1992) (16 Apr. 1992) (3 Nov. 1992) (5 Nov. 1992) (23 Nov. 1992) (1 Dec. 1992) (3 Dec. 1992) (4 Dec. 1992) (8 Dec. 1992) (8 Dec. 1992) (8 Dec. 1992) (14 Dec. 1992) (19 Dec. 1992)

01:02 19 : 32 17:45 00:05 00 : 30 00:20 05 : 59 22:ll 14:45 17:oo 17:30 17:30 17:30 19:30 20~34 17:30 22:05 22:oo 18:OO 16 : 35 05:26 19:50 17:oo 02:09 09:45 01:20 22 : 37 21 :Ol 22:30 22:oo 19:45 22:30 07:50 18:49 23 : 00 18:05 00:48 07:04 17:oo 16:30 16:00 16:30 14:09 15:09 16:09 11 :oo 02 : 39

Oct. Dec. Dec. Dec.

Time

(DDS) configurations,

tests, and other events

Event Galileo launch DDS cover release Galileo LRS start DDS on, noise test and configuration : HV = 4. EVD = C, 1, E, SSEN time DDS noise test and configuration : HV = 2 DDS configuration : EVD = C, I DDS configuration : EVD = I, E, SSEN = 0, 0, 1, 0, long time DDS configuration : EVD = I Galileo LRS end DDS first MRO after LRS Galileo Venus flyby DDS configuration : SSEN = 1, 0, 1,0 DDS reprogramming Galileo LRS start DDS noise test and configuration : SSEN = 1, 0, 1, 1, short time DDS noise test and configuration : EVD = I DDS noise test DDS noise test Galileo first Earth flyby DDS noise test DDS configuration : EVD = C, I, SSEN = 0.0. 1. 1 DDS configuration : long time Galileo LRS end DDS last MRO before anomaly Galileo in safe mode and DDS memory corrupted DDS off DDS on and configuration : HV = 2, EVD = C, I, SSEN = 0, 0, 1, 1, Galileo in safe mode and DDS memory corrupted DDS off DDS on and configuration : HV = 2, EVD = C. I, SSEN = 0, 0, 1, 1, Galileo Gaspra flyby DDS last MRO before switch-off DDS off, Galileo cold turn DDS on and configuration : HV = 2, EVD = C, 1, SSEN = 0, 0, 1, 1, DDS last MRO before switch-off DDS off, Galileo cold turn DDS on and configuration : HV = 2, EVD = C, I, SSEN = 0, 0, 1, 1, DDS last MRO before switch-off DDS off, Galileo cold turn DDS on and configuration : HV = 2, EVD = C, I, SSEN = 0, 0, 1, 1, Galileo LRS start DDS configuration : short time DDS noise test DDS noise test DDS noise test DDS noise test DDS configuration, HV = 1, EVD = I, SSEN = 2,0,2, 2 Galileo second Earth flyby DDS configuration, HV = 2, EVD = C, I, SSEN = 0, 0, 1. 1 DDS configuration : long time Galileo LRS end

= 0. 0, 0.0, short

long time

long time

long time

long time

long time

Abbreviations used to describe the instrument configuration: LRS, data transmission in Low Rate Science format; MRO, DDS memory read-out; HV, channeltron high voltage step; EVD, event definition, ion- (I), channeltron(C), or electron-channel (E); SSEN, detection thresholds ICP, CCP, ECP, and PCP ; short time, time resolution 2/3 s ; long time, time resolution 1 h before 90176,4 h after 90-I 76.

recorded in intervals of seven days or longer, depending on the occurrence of MROs. When the frequency of

MROs was higher or when no impact was recorded, MROs are lumped together. The instrument was shut down five times, sometimes intentionally to protect it from direct solar radiation during Sun-pointing periods and at

other

times when

the data

were corrupted

unintentionally

by spacecraft anomalies. These breaks are indicated as solid lines in Table 3. The largest gap appears between days 91-121 and 91-228 : the instrument was switched off and on twice, but no useful data were recorded over the entire three and a half months. During the initial three

E. Griin et al. : Three years of Galileo dust data

103

-60

-50

-LO

Time

-30

from

-20

-IO

clozesl

0

IO

approach

20

30

40

50

60

[mlnl

:::/ 0

I

I

200

I

I

400

I

I

600

,

I

,

I

I

I;

800 1000 time from launch [ days 1

Fig. 4. Impact rates as a function of time are shown for “big” impacts. The thick bars give the average fluxes in the indicated intervals. The boxes indicate the l-sigma error. Flybys of Venus (V), Earth (El and E2) and Gaspra (G) are indicated

Time

from

closesi

approach

[hours1

Fig. 3. Noise count rates during Earth flybys. Event counters (bars) saturate at about 20 events per second while the special noise counters saturate at about 200 events. (a) Galileo had its first close approach with the Earth on December 8,199O at 20.34 hours UT. Instrument threshold (ICP) was set to step one. The event counts were averaged over 2 min. (b) The second Earth flyby occurred on December 8,1992,15.09 hours. For 2 h around closest approach, the sensitivity threshold (ICP) was increased from step 0 to step 2 years of the Galileo mission, the instrument detected 469 “big” dust impacts. Since both the dust impact and noise rates were low during most of this period it is expected that, when the instrument was on, no “big” dust impacts were missed. Radiation belts provide a noisy environment for the instrument. During the two Earth flybys, 528 clearly identified noise events were logged in normally noise-free categories. Here we give the accumulator name followed by the numbers of noise events detected during the 1990 and 1992 Earth encounters: AC21 (191/139), AC12 (74/66), AC22 (39/2), AC03 (O/10). AC13 (O/4), and AC23 (O/l). These events are not included in Table 3. The noise rate as a function of time during the two Earth flybys is given in Figs 3a and b. During several hours around Earth closest approaches, and in a much reduced manner during the Venus flyby, the increased noise rate caused significant dead-time. Figure 4 shows the impact rate of dust particles recorded by the Galileo dust detector up until the end of 1992. At the same heliocentric distance, the impact rates were lower by about a factor ten when the spacecraft moved towards the Sun compared to the rates measured when it moved away from the Sun. This effect is due to

the fact that the dust detector looks away from the Sun ; when Galileo has a positive radial velocity, the instrument’s field of view includes the ram direction. After both Earth flybys, the impact rate increased by about an order of magnitude for a similar reason. Each flyby increased Galileo’s radial velocity, thereby making the instrument more sensitive to dust on low eccentricity orbits. Finally, during the Gaspra flyby no enhancement above the average impact rate (0.3 per day) was observed in agreement with the prediction of Hamilton and Burns (1992). With the help of the elaborate memory storage concept of the dust instrument, complete data for 358 impacts were received on the ground. In the original memory setup, only “class 3” events were stored in a safe portion of the memory that would not be overwritten by lowerclass events. Because of the long time between subsequent MROs, however, about 50% of the data for impacts in other classes were being overwritten before they could be transmitted to ground. The problem was remedied in June 1990 when the instrument was reprogrammed with a new data storage and transmission scheme. The improvement allows us to store and subsequently transmit several events of all categories in a single MRO. In addition, the content of a MRO was increased by about a factor 3-with this scheme complete data of 95% of all recorded “big” impacts were received on the ground after June 1990. A list of the 358 “big” impacts for which complete information exists is displayed in Table 4. Dust particles are identified by their sequence number and their impact time. The event category-class (CLN) and amplitude range (AR)-is also given. Raw data as received on ground are displayed next : sector value (SEC) at time of impact, impact charge numbers (IA, EA, CA) and rise times (IT, ET), time difference and coincidence of electron and ion signals (EIT, EIC), coincidence of ion and channeltron signal (IIC), and charge reading at the entrance grid (PA) as well as time (PET) between this signal and the impact. This is followed by instrument status information such as event definition (EVD), charge sensing thresholds (ICP, ECP, CCP, PCP) and channeltron high voltage step (HV, see Paper I for further explanations). Orbital information follows next : heliocentric distance

Date

1:171

Es

8%‘: L0’913

1.124 0.989

:# ;:fii

1:263

:.2as: ::;j;

M3 1:248

1.175 1.197

18i59

Cg:g

:Ei 17I59 19I29

2‘3336

16:38

1:126

ME ;:pti

13.0 29.3

11:;

I:!

13:1

54

!i:8

i:$

‘E

.

a:!

R:!

$:!i

8:;

26.9

0.782

8% 0:892 0.931

!B:Z

1E X36 31:3 0:722

17:20

8:E

WJ)

Time

At(d) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

i

i

i

1

AC 01 AC 11 i? i:: 12

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

AC

02

1

22

AC

32

AC AC

13

AC

03

23

AC

33

AC

AC

14

AC

04

24

AC

34

AC

05

AC

15

AC

25

AC

35

AC

06

AC

16

AC

i

26

AC

36

AC

years of the Galileo mission. Switch-on of the instrument is indicated by horizontal lines. The heliocentric distances and the corresponding numbers of impacts are given for each of 21 accumulators. The accumulators are arranged classes for each amplitude (CLN = 0, 1, 2, 3); e.g. AC31 means counter for AR = 1 and CLN = 3. The three The totals of counted impacts, of impacts with complete data, and of all events (noise plus impact events) for the

AC

Table 3. Overview of accumulated big impacts during the first three Y, the lengths of the time intervals At (days) from the previous date, in order of six increasing signal amplitudes (AR), with four event accumulators that usually contain noise events are marked by “*“. entire period are given as well

E. Griin et al. : Three years of Gafiieo dust data

959

E. Griin et al. : Three years of Galileodust data

!

01 14

1

,

I

15

4 .

.

IO0

16 hours of 8-DEC-92

I,

/orI

impact

lo-" charge

Ii_ (0,)

amplttlide

[CI

Fig. 5. Details of the second Earth flyby as a function of time. The distance from Galileo to Earth is given (dashed line) as is the area of the dust detector capable of detecting particles on circular prograde orbits about the Earth (solid line). A single dust particle was detected almost exactly at closest approach (open circles)

Fig. 6. Amplitude distribution of the impact charge Q,. Bars indicate numbers of impacts per charge interval, while the solid line shows the cumulative distribution. This curve is significantly flatter than a similar one for Ulysses (Paper III, Fig. 4), implying that Galileois sensing larger particles

(R in AU), ecliptic longitude and latitude (LON, LAT)

speed values are analyzed and finally the Galileo impact rates are compared with Divine’s (1993) meteoroid model. Because of its relative insensitivity to noise, the positive impact charge Q, is the most important impact parameter determined by the Galileo dust detector. Figure 6 shows the distribution of the impact charge (Ql) measured until the end of 1992. Impact charges are observed over the entire six orders of magnitude that the instrument is capable of measuring. About 2% of all impacts are close to the saturation limit and may constitute lower limits of the actual impact charges. Above about lo-l2 C, the impact charge distribution closely follows a power law with index about - l/3 which is flatter than the - l/2 power law obeyed by Ulysses impacts (Paper III). This is a real effect which implies that, on average, Galileo is sensing larger particles than Ulysses. The number of impacts inducing charges below lo-l2 C are reduced in Fig. 6 ; thus the low Q1 impacts are not complete. The same is true when one looks at the charge distribution of Ulysses “big” impacts (Paper III, Fig. 4). Both Galileo and Ulvsses instruments showed high noise levels for the channeltron detector, even at low channeltron amplifications. To improve the noise behavior, we used a lower high voltage value (and hence amplification) than originally planned. In this paragraph, we determine the in-flight channeltron amplification. A measure of the amplification is the ratio of the channeltron charge Qc over the ion charge Q1. This ratio is displayed in Fig. 7 as a function of the ion charge Q, at high voltage step HV = 2 (1020 V). The sensitivity threshold and the saturation limit of the channeltron charge are given as solid diagonal lines. The mean charge ratio Qc/Q, (i.e. the channeltron amplification determined for lo-‘* C < Q, d lo-” C) at this high voltage is A - 1.6. Masses and speeds of all “big” impacts recorded until the end of 1992 are displayed in Fig. 8. Speeds have been found over the entire calibration range from 2 to 70 km S -I and the masses vary over 10 orders of magnitude from lo-l6 to lop6 g. The mean errors are a factor 2 for the speed and a factor 10 for the mass. The clustering of the speed values are due to the discrete steps in the rise time

and the distance to the Earth (& in AU). This is followed by the rotation angle (ROT), as defined above. Whenever this value is indeterminate (SEC = 0), ROT is arbitrarily set to 999. This occurs 71 times. Ecliptic longitude and latitude (S_LON, S_LAT) of the positive sensor axis pointing are displayed next. (When ROT is not valid, then S_LON and S_LAT cannot be used.) Mean impact speed (0) and speed error factor (VEF) as well as mean particle mass (m) and mass error factor (MEF) are presented last. We suggested that whenever VEF > 6, both speed and mass values should be discarded. This occurs for 21 impacts. No intrinsic dust charge values are given because the noise rate was very high (Paper I). Furthermore, the signal amplitudes on the induced charge grid were similar for both noise and impact events. Therefore, reliable dust charge values are difficult to obtain and require careful study of the noise environment with the whole data set. This work is forthcoming. During the second Earth flyby an impact of a “big” dust particle (No. 350) was recorded. This particle was detected at Galileo’s perigee 300 km above the Earth. It had a mass of 3 x lo-‘* g and an impact speed of 33 km S

‘, which is compatible with a debris particle in a bound orbit about the Earth. No other debris particle was detected during this flyby. Figure 5 shows the sensitivity of the Galileo dust detector with respect to dust particles

in prograde circular orbits around the Earth. Such particles are strongly concentrated at low altitudes and were nearly impossible to detect during the inbound trajectory of Galileo. No dust particles were detected during the previous flybys of Earth and Venus.

Analysis

In this section we will discuss various characteristics of the data set presented above. First we discuss the amplitude distribution of the impact charge. Then the in-flight channeltron amplification is determined. The derived mass and

E. Griin et al. : Three years of Galileo dust data

961

0

1990.0 Impact

ion charge

amplitude

[Cl

Fig. 7. Channeltron amplification factor A = Qc/Q, as a function of impact charge Q, for channeltron high voltage step 2 (1020 V). The area of the squares indicates the number of events included at each point W5 1o-6

10-7

1991.0 Time

A

1992.0 [years]

A

oA

1993.0

Fig. 9. Rotation angle vs time for two different mass ranges. Gaps in the data coverage show up as empty vertical bands. For some time periods no rotation angle information was available ; these data are not shown. Symbols denote different mass-speed combinations. Squares and triangles are particles with masses > 2.5 x lo-l4 g while impacts denoted by plus signs are smaller. Squares are fast particles with speeds > IS km s-‘, whereas particles denoted by triangles are slower

lo-* 10

G

s

2

9

.,o-‘o

10-l' 1o-'2 lO-'3 10." d,o-t5

1o-'6 lo-" IO0

IO' 5peed

[km/s 1

Fig. 8. Masses and impact speeds of all “big” impacts recorded by Galileo. The upper and lower solid lines indicate the threshold

and saturation limits of the detector. The central dotted line is the effective mass threshold dividing “big” from “small” impacts for the Ulysses data. Applying the Ulysses result to the Galileo data set implies that the number of “big” impacts below this line should equal the number of “small” impacts above it (see Paper III)

measurement, but this quantization effect is much smaller than the uncertainty in the speed measurement. The large number of very low impact speeds (below 3 km s-‘) needs further study. The number of “big” impacts is incomplete in a band of width a factor one hundred in mass above the sensitivity threshold. Many of the “big” impacts (46%), however, occur in this band. Furthermore, the “small” impacts have yet to be recovered from the Galileo data. The effective mass thresholds for “big” impacts has been estimated for the more complete Ulysses data set (shown as the dotted line in Fig. 8). If we adopt the Ulysses results (cf. Paper III, Fig. 7), then the number of unseen “small” impacts above the dotted line should equal the number of detected “big” impacts below it. It should be remarked that this threshold for “big” impacts is rigorously valid only for the dust population (mass and speed distributions) recorded by the Ulysses dust detector. Therefore, by applying this threshold to the Galileo data it is assumed that the mass and speed distributions of the dust particles recorded lay Galileo and Ulysses do not significantly differ. At masses > lo-” g, all “big” particles

except the slowest (< 6 km SC’) can be detected. Particles with smaller masses will not be completely recorded because those with slower speeds fall below the detection threshold. Directions of the recorded “big” impacts are shown in Fig. 9 : the rotation angles at the time of impact are shown as functions of time. Meteoroids moving parallel to the ecliptic plane should have rotation angles around 90” and 270” (see the discussion of the rotation angle above). Beside some gaps in the data, there are times when rotation angles are uniformly distributed and other times when they cluster in a limited rotation angle interval. Uniform distribution of rotation angles can occur when dust particles arrive at the spacecraft isotropically (at least in the spin plane), when dust particles arrive from close to the spin axis, and for other more complicated distributions. For most of the times, rotation angles cluster around 90”. This effect is most obvious during the second half of 1991 and the beginning of 1992. Modeling the impact directions as a consequence of the orbital distribution of interplanetary dust particles is in preparation. Figure 4 shows the observed impact rate variations with time. During inbound (towards the Sun) portions of the interplanetary trajectory the dust detector pointed to the hemisphere opposite to the spacecraft motion; thus impact velocities were reduced and the observed impact rate is correspondingly low. In contrast, during the outbound portions of the Galileo trajectory the sensor points towards the hemisphere which includes the spacecraft ram direction and hence the observed impact flux is high. The genera1 decrease of the dust flux with heliocentric distance is due to the decrease of the interplanetary dust population with increasing distance from the Sun. This flux variation is quantitatively modeled by Divine’s (1993) “Five populations of interplanetary meteoroids” model which is based on a variety of interplanetary dust observations including Galileo data from the first year (until the end of 1991). It is interesting to compare the impact rates observed by Galileo (Fig. 4) for the three-year period with

90-089 22:33

46

48 49 50

ii

12

2 217

3 _ 222 ___ 21 --

3 3 3

3

90-09.13 12:50 __.__ go-094 01:46 go-094 14:43

3 3

3 _

3

3 3 3 3

3 3

5

iCLiji6 OSIZOi

03:13 22:3a 11~31 15:50 la:32 03:09 05:02 ii:31 13:24 0O:ll 11:30 la:14 2k28

14:33 02:25 03:29 m29 _ _. __ 13:12

49

21 19

238

13

ZS

97

2ii

:: la 9 5

5 246 3 35

5

2

4

% 153 199 249

: 3 2 1

6s

rn

i

aoe

2R 16

9

4

s

1; 5 23 27

1;; 204 2364

; i ;

19

“; 21 20 a 20

: 2:; 3 64 3 205 2 140 3 62

3 213

iZ 25

OSIOSii

go-059 go-060 go-060 9hnfin __ _ _ _ 90.-060 90 -061 go__ go-07 ‘a go-078 90-080 go-081 go-082 90-082 90-083 90-084 90-086 go-089 go-089

zs 29 30 31 __ 32 33 34 35 36 37 38 39 40 41 42 43 44 45

a7 &iiii

22 23 24 25 26

9h053 __ -__

i 2 3 3 3 3 3 3 J 3

Z 153 4 30

1

03~14 17:49 la:53 23:12 06:45 09:43 10~47 __._. 12:57 16:ll 07:17 15:55 02:25 05:23 07~32 l&10

-J

101

56

; 7 27 49 56 2;

icya_-- 2050 --.--

Jpo41 go-047 go-051 go-051 go-052 go-053 go-053 go-053

49

239

_ ___ 2 1 152 a 123 19 i --6 -7 ; 8 t;:

6

266

53

2: 7 11 Zi

a 5

57

49 G

2; S 49 28

2

2Z

22

3: a 24

4

49

14 20 -5 31

::

:: 29 22 49 55 ::

4; 1 20 3r:

11

IA EA

: 8 1 0 4 0 r\ 74 6 235 3 21:

3 3 3

3 3

go-021 oa:34 90-022 21:14 9cb023 12:20 go-031 22:ll

90 .nia ___ nsrni __.__ go-017 12:55 90-019 09:07

3 _

1

2

E

k

3

S

C AR

- - - 14:in __.__ 3

gom.5

89-365 10:Oa go-002 11:45

go-054 go-054 go-056 go-057 go-057 90-057

ii

2n

7 a 9 10 !; 11 13 14 15 16 17 la 19

1 2 3 4 5 6

No. IMP. DATE

t

29

1 1 22

21

223 i 28 22

ii

17

1

li

25

9 1 22 50 31 2 13

4 27 1 1 :

CA

15

1:

13 14 7

6

1 13 a 4 5

-9

12

13

7

4 15

13 4 14 is 12 15 13 1:

12 10 15 10 -4

IT

E UE

5 3

11

15 a 15

15

12 14 9 15 4

iZ

15

1; 9 8 2 6 6 6 4

14 3

5 2 14 9 15 10 12 6

0 0 0

0

0

0 0 0 0

0 0

0 0 1 1 i 0 0 0

0 1 0 0 0 ;

E

5

6 15

12 15 -0 0

0

0 0 1

; ; ii 0

157 10 5

9

7

-6 6 15 14

iZ 5

15 15 15 0 0 5 15 15

1 13 15 0 15 14 15 8 -i 15 ; l;

ET

i

i1

1

i

1 I

:

:

; i

1 1 1

i

5 3

46 34

0 31

5

x 5 5 5 S 5

5 5

1 1 1

i

1 1 1 1

i 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0

I

i

1 1

i

1 I

:

:

; E ; OSiiOO

:: 3 31 2 2 23 18 I 27 3i 63 0

Si 20

:; Si

5 5 5

5

5 5 5 5

5 5

5 5 5 5 s 5 5 5

5 5 5 5 5 5

251100

0

0 0 2 0

21 2 33 0 1 31 33 31

53

z: 30 9 45 43 6 31

3i 0

7 2 9 1 24 1 31 1 1 30 60 12 31 0 27 3 14 3

ii 47 23

E

[email protected]

P

13 1 31 10 7 31 9 3 li i 46 0

PA

112

1 1 1 1

i 1

1 1 1 1 i 1 1 1

1 1 1 1 i ;

I

1

1 1 1 1

;

1 I 1 1

i

1 1 1 1

i 1

1 1 1 1 1 1 1 1

1 1 1 1 i 1

0

0

0

0 0

;

0 0 0

0

0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0

tl 0 0 0 0 0 0 0 0

;

0 0 0

0

0 0 0 0

0 0 0 0

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

E C P

2

i 2 2 2 2 2 2 2 2

2 i

2 2 2

2

2

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 a 2

2 2 2 2 2 2

HV

0.80580 0.80842

0.75326 6.75432 0.75862 0.76045 0.77084 0.78543 0.78605 0.78626 0.78833 0.80319

0.74911

0.70054 0.70128 0.73945 0.74775 0.74008

0.69986

0.70008

0.78966 0.78388 0.78151 0.75047 0.74711 0.71923 0.70525 0.70046 0.70034 0.70010 0.69938 _._____ 0.69935 0.69931 0.69924 0.69896 0.69aa4 0.69857 0.69862 0.69863 0.69870 0.69934 0.69946 0.69977 0.69980

0.86721 0.85992 0.84677 0.62366 0.80415 0.79716

R

248.3 249.1

230.0 230.4 232.2 232.9 236.9 241.9 242.2 242.2 242.9 247.5

228.2

192.0 193.5 223.7 227.6 224.0

iZkf

1

123.2 125.4 126.3 139.0 140.5 154.1 166.3 174.0 174.4 175.0 177.1 _ ~~~ 177.2 177.4 177.6 178.9 179.5 182.3 184.5 184.6 185.3 188.6 189.0 I;;.; 1

96.2 98.7 102.4 111.0 117.9 120.4

LON

0.4

i.5 i.5 1.4 1.3 1.1 0.8 0.8 0.8 0.a 0.5

0.84943 0.85355

6.74906 0.75154 0.76138 0.76543 0.78730 0.81509 0.81621 0.81658 0.82026 0.84528

0.53629 0.54481 0.71390 0.73569 0.71563

0.20951 0.21687 0.22001 0.26860 0.27484 0.33636 0.39864 0.43903 0.44086 0.44407 0.45557 0.45603 0.45696 0.45834 0.46483 0.46855 0.48347 0.49520 0.49614 0.49991 0.51783 0.52020 0.52540 0.52587 0.52682 0.53013

0.14169 0.14624 0.15373 0.17362 0.19276 0.20055

RB

1.6 0.73905

3.0 1.8 1.6 1.a

4.3 4.2 4.2 3.9 3.9 3.3 3.4 3.3 3.3 3.3 3.3 3.3 3.3 j.3 3.3 3.3 3.2 3.2 3.2 3.2 3.1 3.1 3.1 3.1 3.1 3.1

4.1 4.1 4.2 4.3 4.3 4.3

LAT

128 228

:z 999 999 999 132 216 231

:: 999 999

125 147

104 41

170 100 314 152 115

76 158 162 2;:

8::

la3 23 163 118

fZ 229

1:: 145 138 150

302 291

284 257 256 287 188 257 298 197 277 300

284

::: 242 284 272

ix:

JOJ 130 192

16; 253 3

V

70.0 2.0

2.0 12.7 7.7 -10 39 40.9 2.0

35 -45 -19

11 19.0 12 56.0 -47 2.0

-215 29.8 52.6

999 999

53 4.5 -16 4.5 -23 11.8 a 4.5 999 70.0

SLON SLAT

and evaluated

1:; 53; la3

235 48

999 999 999 999 346 %

1:: 236 277 999 tit

ROT

Table 4. Raw data: No., impact time, CLN, AR, SEC, IA, EA, CA. IT, ET, EIT, EIC, IIC, PA, PET, EVD, ICP, ECP, CCP, PCP, HV; rotation angle (ROT), instr. pointing (S,,,, S,,,), speed (c,), speed error factor (VEF), mass (m) and mass error factor (MEF)

1.6 1.9

1.9 1.9 2.0

1:9 2.0 1.9

:.;

1.9 1.9 1.9

1.9 1.9 11.8 1.9 1.9

VEF

data:

MEF

* ;cr;;

2.0. ’ lo-lo lo-‘> 2.1

2.4. 1O-1" 1.3 f lo-!_’ 1.6.10-y”

3:2 : lo-” 1.6. lo-!? 1.2 * lo-O6

;.:

1.7 * lo-lo 5.3.10-1~ 6.4. lo-“’

1:::

10.5 10.5 12.5

1::: 12.5 10.5

10.5

10.5

7.5 ’ 10-12 10.5 1.5 410-08 3.4. lo-‘* 58::‘: 4.9 * 10-11 1015 1.2 * 10-16 10.5

M

R, LON, LAT. &,

t!

i-j;.

i.;

0’9

:*:: Sol S'OK 0'9 ;:;K

s.01 019

;:;

6’1

9’1 6’1 6’1 i::

,,-01 cr-OT

* z-1 * R’S

9’1 9’1

,,-OK*z'S9'1 nr-OK*0'9 6'K ,,-OK*K'Z6'K ,,-01.9'16-K so-OK. 1-t 6-K ,,_OT*K'&9'1 or-OK* E’L 6’1

* 9’1

*. ;; *

ov8; 01 lr_01

;:g

* p’9 . VI

or-OI*E-E

01 cr-Or or-OI

4'01

0’9 9’01:

YC

K’EE KP

E'Z EP S:Z 6K :;: :: * 6'OP KS

5%

ir-

L

ES-

Cl ;;: 8K 8Z

9-z

LT-

y

fi-

9PzzE6E

g-

sc-

;:“op

S’OE

F':t * :B-

0'6K Kz S'P OS

!g:, .

Z-L

FZ

9’Z9 9’TZ o’z O’Z

::2 FS'Z P0'6K SE 8'6Z PES'P PP O'Z s

__

L:6 2.; ST 6-E

“.

J.C-

_

J'LT

8'11 OK

L’ZI

;.g ;;: K:RZ E;iz ' g:

0:z

1'9Z KSS'Z PZR'KK ESp'zz ZE Wz KS-

93

0'61 ZS t:; 9'6s KKO'PK El K'Z 8-L KK9'K O'tl 8

;:;

,,_OK'E'69-K s0_oK*O'L 9'1 ,,_OK'R'P9'1: ,,-OK'O'ZE'Z ,r-OK'0'89-K

9'K ~'8989 R'KK 0.9 9'1 n-or :::oi*tir6-t - -. ;:g ;;;3i - L’I 6.1 ,,_OK~6'K6-K S'OK pT-OKm L’E 6'K ,r-OK'8'P8-K 0'9 ,,,_OK.P'S 6-K 9'01 ,,_OK'L'66'K ,,_OK'E'E 6'1 tx: 9'8989,r-OK'L'8R'KI C.i-tl __ nr .w fi.1 9.r 0'9 S'OI rr-OK*E'9 6-K sot ory;;1;:: 66:; 9'01 cr: cr_OK*L'K 6-K S’OT ,,-OK*R'K9'K 0'9 ;:;; rr-OK*S:L 6:K eo$*;; g": ' 0'8 nr .* S'OK ,,_OK*K'S6'1 S'OK ,I_OK*K'96-K S'OK ,,-01*8X 6:K orj;:;:; ;.; g'

0’9 L’EZ 0’9

;:; 0'9 S'KZ 0'9

iiT

e ii-

P6_ L6Z

--LLt' s9 KEZ 6EE 96Z LE 9CT ;fE 6tZ

CKI

OOK

RKC

ZIE

6E is L ZE

99Z __-

::I RI1

tE: sot ZZE 9TZ_ 60_NE PIG ELZ ooc

x5

RLZ 96 PP

KZK L6K 99 4:;

EL

99K

OKE EPC 80E ERZ 6EE 6EZ OtX RZZ EEE ZZE ZEZ

__*

9L

%K

i8K

KCZ ZEK

PO1

EOZ P) EbZ

iI

9L

El

801

CPT

““”

OE ig ESE OK RZE

PIW

PSE K O % SSE

082 z9z PRZ 89s ZRZ zsz

sz tss

;Z 6ZE OZE ZPE E6Z 6ZE PZ O-E-

9’LIE

SZTPT’I

i

_

_”

Il'L”

___

nmic _____

kmmrrr -

L

6’06’0-

886LR:O 0 L1698 E8198’0

LESRR’O Z Z

i

Z

p'zsz c9898'0 S'O9Z LLOSR'O ^.^^_ " "YC L99f9'0 :‘O Z C'6SZOK9P8 I'0 S'SSZPSKER _ z P'PSZ IZLZR'O i S’ESZ - _-- EOfiZB’O __. -. . Z f9L98’0 Z'O R'KSZ ELLKR'O i? 8'0 E-0 K'KSZOSSKR'O Z ocP9mm __

PKtZ6'0P'O88KK6'0 og606'oE'[email protected] OK906'0Z-OZKLRR'O0'0 91188'01'0 69918’0 ______ I.0 _-

Itl06’0 SPOO6’0

6*89Z _ _-- na988'0 ____. -

Z’ZLZ 6’tLZ

LPOS6’0 L’O9’892 ____ ELPP ’ P:LSZ 6 P9Z PZEC ;:; ;';Z’E9Z L6PZ 6’0 P’O-

m~wo ___-_ _ wn__

86V96.0

‘0

Z9ZCo'KO'Z- 9'K6Z9K666.0 i ZZRZO'K6'K- 8'68ZE8686.0 Z LOSZO’I R'K- 9'882P9E86'0 Z 68LKO'KL’IZ’98Z 1901 5sYi i 36’0 Z PzLKO:KL’T0:98Z PL6! LO9KO.KLIP L_SRZ KK896:O L66OOK 9 K- L ERZ KRLS60 98200'1S'K- 9'KRZOZLPG'O RP866'0P'K- P'ORZvolwn K6666.0O'K- K'6LZ98PI OZ886'0C'K- 9’LLZ RPLZ6'0 6Ko86:oz-r- P’SLZ LZKZ6'0 ;;W; 0 6'0- Z’ZLZ tPT06.0

““___

LfiCfWT

n

00

1

i

I

K K K K K

T

i

K K K K K K K K K K

KELP 5; OE &I 8& P KZ 0 KP

0 0 0 0

il

I

I

K K 1: K K K K K

K E 0 0

I

S T

s 9 S S

S

0

0

0 0

ii

0

I I

i

I

::

0 0 K 00 K 00KKSD 0 0 K 0 0 K 0 0 i 0 0 K 0 0 K 0 0 K

0 0

ii

0

I

S

r i 6

z

9S 9

ii

S

81 Z 0

i

1

K I. r K i K

S K s K So SK I; 0 S 0

K S Z K so

I I: 1

i

I

::

II SC K K 9 E

r

0 0 i

: ; ; ;

0 0 K K 9 0 0 0 K K 9 0

0 0

0 0 0 0

0

I K K K K

K 0 K 0 0 6 0 SK 0 8 099 069 I P 0 OK 0 8

SK 11 PI KK ZK

SK PI ZK 6 9

ET SK 8 ZK 9 96

IE

0

11

IO

KOSP

KOL

I I

T

I

: K

SK

0I 0

ii

0

EK 9

L s

d

L

i’9 0St S

6 P E

LPZ 01

CK

LPZ

;99 LS LB P9 E I

z

9

: C C z

9 oz ;;

bCL ._” 1;:

K

IE

Z I

ii: zzr

: z

sz

oz

i:

!x

IP

9E

tr

EE

P

E

r

P z

E

5

z

I

ii

iv

ii

r

PK ZK 6PZ Z K if g g gz :

LI

PZ I

E

ORT Lt

61 ZSZ E

t: ZI

6 L

s SK ZK z EZ PEE c

11:

zzs EI L ZIZ 62 SZ 9EZ OK IK KEK

ZZ KK I s

L

P

9zz K

2

6K 6K 8E E SK P ;K ;z LZ TZ czz P OZ 6K P9K E

ir

9 t

9

L 91

E

PZ ;;

ZZ 8K 99 ZZ OK 6P L1 SK

IS LI LZ L

2

SK r; PK KK 8

St

0 i:

0

8

L

; 6K KZ ZK 09 OK OZ

iK ::K E :Z 1 SK :; 2: t sz PZ EC P PK zz KK PZ 9Ll P

;K 6 91 I)

;I ZZ 92 oz 6P PK ZZ KC

El 6 EP Z ZS OS 8K S

!C ZK PI Cl PI oz

K 8Z 8 P KK

;I OK 6K PK K K 0 SK L OK K 5 0 PI Z ZKK

91

6Z K 0 SK KK sz r 0 4 21 LP K n 9 61 K 0 5.1 i oz K 0 ii K 0 it! 82 K 0 ZKZ P$ K 0 9 s 9P K 0 9 L cJ3L

OZ 62 LP

ii

&I

;::

KE 62

IZ

8

KKK i

;: : 8 f

ii

1

K 0 SK s KOSKE

I

KC ; ; Ip: K n

ZP

PI 9 SP 9Z 9Z

iI

: OK 9 r r;IEI 1 0 01 OK 0 BE K 0 OK 0 SK K 0 OK 6 !K ZK z I. :: :: Kt SK

9 S 4 S 9 9 9 9 s 9

0 0 K K S K

0 n

ii

0

0 0 0 0 0

: 0 K : 0 K 0 K 0 0 K

0 0 0 0 0

E 80

SSKPO-KO'E- 8'9KE99911'1 69KPo'KWC- L’SIC IE9E‘[‘I 8&9Po'K6'Z- I’PIE 9PZZI’I Z z LSLPO'K6-Z- Z’EIE 96LTr.r 698Po'KR'Z- E’ZIE ZOEl LEKSO'KL'Z- 6'80ELSPGO'K Z PRKSO'K9-Z- 6'SOE69LLO’I i PPOSO'KS'Z- 9'ZO88L6SO.K z R&OSo'KS'Z- 9'ZOE 9E6SWK Z OEOSO'KS'Z- P'ZOEPLRSO'K Z PO6Po'KP'Z- O'KOEOROSO'K Z RLLPO'KP'Z- 6'662SPPPO'K Z 6OSPO'KE'Z- 6'L6Z KSEEO'K Z 9IPPo’I Z’ZE'LGZSZOEO'K Z

2% iEO’1

L'ZEE 86ZKZ'K z R'KEEEKGOZ'K Z E'OEEESZOZ'K Z C'OEECSZOZ'K Z K'GZESPL6K'K Z 9'LZ&7xm'K LLPOO’I Z’EPEPKO'KZ'E- P'SZE IPORK'K EPOZO'KK'E- 6'EZE806LK'K RLOZO'KK'E- R'EZEC9ZLI.I: LBPPO’I ._- _ WC- _ 6'6KE _ . . %RZSK'K .---. _--

6KLL6.0E'EZ9Z86.0E'ESOK66'0C'CSOK66'0E'EKZL66'0Z'E-



Pf1-M

'3

)A ZP:ZK LET-O6K8 ZZ:RKZEK-0608 ZP:SOKU-06 6L 6Z:60 6Zt-068L zz+o mu ;4, 8SW

IT:FT

9z:11 0o:zo

UOKQ6 es

K9 9~OK-06 09 siOt-06

I_

E WOK Pot-0669 E 6K:IZZOK-068S r Lg:fKZOK-06LS 0 !a:10 ZOK-069s E 8P:SO660-06SS E 8KL60 860-06PS E ZK:RK L6O;f f; ; ;Ff; ;60__ 160-06 KS N

E c

6E:KK (SZK-06SL 9O:PO SZK-06PL 6E:POEZK-06EL LOW0 KZK-06ZL vOm3OZK-06TL c zo:oz 8KK-06OL 9E:Ot LKK-0669 f CC:909KK-0689 E ZOXK ZKK-06L9 E I!OXKZKK-0699 E PP:ROZKKQ6S9 E SK:616OK+$ ;;

E 6 E E E E

E & K E K

S

90:EK S8K-06SO1 WZO PRK-06POK OE:RKKRKQ6 COK 6ZZRKKRK-06ZOK KZ:EZ 6LK-06KOK 9K:SK LLK-06001 oK:OK PLK-0666 PI?0 ZLK-0686 0O:KOZLK-06L6 ZO:RO 99KQ6 96 ZWO 691-0696 SZXZ K9K-06P6 SK:KZK9K-06E6 CO:80 RSK-06Z6 LSK-0616 E SO:90 E 8S:EZSSK-0606 E 9K:PK KSK-0668 E KE:LK LPK-OB88 E L&:RKUK-06 LB E LZ:91 UK-06 98

K K C E E

90-28600:07 13:36 90-288 90-28821:41 90-28914:56 90-29623:49 90-30306:49

90-326 90.30918:20 16:59 90-33622:53 90-34303:52 90-34305:48 90-34513:49 Q&346 14:17 90-34811:14 90-34812:08 90-34901:38 90-35019:lO 5)[email protected]!

90-36403:09 90-36415:23 : 91-00223:52 91-00308:30 3 1

122 123 124 125 126 127 128 129 130 131

132 133 134 135 136 137

139 138 140 141 142 143 144 145 146 147 148 149

157 158 159 160

2 206 57 12 14 5 244 53 2 185 11

2 208 10 4 149 26

1 3 49 49 4:

31 19 30 19

6 1 213 40 56 1

21 29

2: 1:

2g 11 8 14 20 15 5 49 21 55 14 10 8

29 1:

1:

4 3

6 5 1 8

: :F: 2 1 177 25

: :

198 9 '::: l$ 18 13 244 7 19 14 254 10 233 28 52 4 249 54 57 12 -72 8 241 13

2 : 2 i 2 2 4 1 5 2 2 2

3 12 19 1 152 7 2 17 13 2 17 9 3 117 20

ti 62 57 29 s :: :85 ::

10 50 3 0 ;;

f; 21 20 1:

12 14 55 22

3 2 181 41 18 10 3 100 19

:8'; 4; 144 13 232 15 55 4 34 8 220 11 213 19 51 14 13 14 1;; 2;

10 25 24

t; ;; 46 13

; 2

; 2 Q I 2 2 3 2 2 ;

fI 19

47 38 54 19

5 3

21 55

IAEA

3 1 3 1 3 1 3 3 3 3 3 1 3

3 3 3 1 1

: 1 1 90.24000:15 3 90-24013:12 3 90-25413:42 1 90-25422:19 3 90-26007:45 3 90-26016:22 1 90-26601:48 1 90266 lo:25 1 90-27a08:47 1 90-28002:18 3

90-187 21:lO

90-1872l:lO : 90-18'7 al:10 90-18912:OO : 90-18912:OO 3 90-19102:50 90-19120:05 3" 90-20019:47 3 90-20108:44 : 1 1

6

k

107 108 109 110 111 112 113 114

%

CAR

106

No. IMP.DATE

Table 4. (Cmhued)

lf 14 10 12 10 12 9 10 7 4 15 11 15

2: 15 5

23 1 10 15

7 13 18 13

9 1 5 1 14 10

9 11 1 l4 1 15 1 15 i8 12 12 4 11 29 11 7 13 30 13 4 12 12 15 1 15

4 14 1 10 7 11 5 7 1 14 3 6

3; 13 17 -1 9 13 9 4 1 15 6 31 1

11 12 12 13 31 15 9 14

11 4 12 8 1‘7 15

2; ;; 5 9

14 15 31 8

9 0

0

1 1

0 0 1 0 0

0 1

0 1 1 1

A 0 1 0 0 0 0 0 0 0 ! 0

54 31 22 15 5 3; 3; ;

1 47 31 1 130 11

26 40101 31 4719 14 01 1

125 1 47 11 3 5 1 47 31 5 2 751 1 s 05i 1 33 0 5 1 12 19 5 131 2 5 1 22 2 5 6315 1 4; 3; g 0 3i OS 1 20 45 28 151 : 20 3 5 1 14 25 1 31 25 43 05 47 31 5 17 19 5 : 31 15 1 6 151 1 47 31 5 i Li8 2 5 112 315 1 9 351 1 47 0 1 1 17 11 160 010 1 17 2 1 1 61 30 1 1 18 11

1 1 1

1 12014 0 15 5 1 36 15 5

7 5 2 0 5

0 8 5

UP

1

46 31 1: :

1

. 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0

0

CPHV tw

1

1 0 1 0 0 1 0 1 0

1 1 1 1 1

1 1 1 1 1

1 1

:

0 : 0 r 0 1 0 1 0 i 0 : 0

:

:

0 0 0 0 0

0 0 0 0 0 0 0 0 6

i

0" :

0

0 0

0 0

0 0 0

0 0

1

1 i

: 0 1 0 1 : 0 . 0 1 1 0 1 0 ; 0 0 i i ti 1 i 1 0 1 0 1 0 1 0 0 1 1 1 1

0 0 11 0 0 1 1 1 r 0 0

1 ;

1 1

1 1

1

$f .E, 3.

0 11 1102810131

1 0

15 10 0 0 1

6 1130

15 0 515

38 31

127 1 22 136

1115 12 15 0 1 415 5 0 0 11 1

'5 1: 515 15 0 615 0 6 715 15 7 515 9 5 10 15 15 0 210

E 8 15 15 0 12 11 0 0001 15 011

15 615 8 15 0 6411 410 10 10 14 0 1515 15 10 0001 11 0 15 0 0701 10 15

15 515 0 13 0 11 0

6 31515 0 15 11 0

0 1 0

0 1

1

5 PA

44x5

I$ g

15 815 0 910

13 15

CA ITET RB

-3.3 0.96800 359 -3.3 0.96800 0.96138 347 -3.3 0.96138 25 -3.3 0.95453 195 -3.3 0.95142 -3.4 0.90914 3:;

:47

ROT

% 70'4 76.3 76.4 79.1 80.3 82.6 82.6 83.3

28.6 32.7 33.6 34.2 34.7 39.5 43.8

-2.5 -2.3 0.38070 0.33532 -2.3 0.32536 -2.3 0.31917 -2.2 0.31424 -2.0 0.26458 -1.6 0.22 ‘3;; -1.6 0.183f -0.8 0.08496 -0.3 0.03077 0.0 0.0016 0.0 0.00209 -0.3 6.01421 -0.4 0.01949 -0.5 0.02921 -0.5 0.02940 -0.6 0.03232

-3.2 0.71530 0.66842 ::: -3.3 -32 066466 -3'0 0'56491 -3:0 0:56231 -2.9 0.52321 -2.9 0.52060 -2.8 0.48142 -2.8 0.47881 -2.7 0.43592

1:': 13:6 16.7 16.9 20.1 20.3 23.9

1;:

96: 122

1Oi

236 66 66 285 172

63 if

3

2!X

1:: 150 ::

Y:

::: -3.3 0.72015 0.71893 ;9;

-1.0 0.05620 -1.1 0.06113 0.05844 -1.2 0.06650 -1.7 0.09316 -1.9 0.10465 -2.0 0.11168 -2.1 0.11440 -2.4 0.13234 -2.4 0.13427

;5 46

179 200 2;; 158 240 150

0.95270 85.4 -0.6 0.04132 10 0.95100 87.4 86.0 -0.9 -0.8 0.04965 0.04379 ::: 0.94709

1.22727 1.21098 1.20707 1.20457 1.20255 1.18024 1.15905 1.13542 1.06351 1.01490 0.98352 0.98316 0.97308 0.96887 0.96142 0.96127 0.95911

1.27912 1.27945 1.27898 1.27012 1.26976 1.26347 1.26299 1.25506 1.25447 1.24386

1.27934 1.27937

1.26255 1.26807 350.5 347.9 -3.4 0.85805 0.83203 190 107 1.27632 356.1 -3.3 0.77216 204

1.25568 345.1 0.88385 160 10 1.24832 342.5 -3.4 0.90641

1.21902 334.2 1.21902 334.2 1.22304 335.2 1.22304 335.2 1.22692 336.2 1.22860 336.7 1.24733 342.2

1.21902 334.2 -3.3 0.96800

LON LAT

0.94290 88.9 0.93988 0.94152 90.1 89.5 0.93674 91.4 0.92321 98.0 0.91842 100.9 0.91594 102.6 0.91502 103.2 22 0.90993 107.7 2 0.90948 108.2

2 2 2 2 2 2

2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2 2 j

2

2 2

2

2 2 2 2 2 2

2

R V

M

10.5

MEF

9.1-10-'3 6.9.10-I3 1.2.lO-" 7.6.10-" 1.9.lo-lo 3.8-lo--;; ;*;':gl* 1:s 9:0:X1-" 1.9 1.0.lo--0-T

1.9 1.6 1.6 1.9 1.9 1.9 :*;

1%

It: 6:0 10.5 10.5 10.5 10.5 10.5

1E 3.9 4.7*lo-" 12814 1.6 8.0.10-I5 6.0

VEF

% 125 51 138 140 157 150

0:

:t 142

2-1 ::t

1E 14.5 -55 28.7 ::t 10.5 -a5!7:.': 10.5 -50 11:s 1:*89 5858.3 -50 2.3 1:Q 10 5 -24 10.6 7.7 7.1.10-y 1303.9 1.9 1.5* lo-"m 10.5 -t! 704.: 2.0 5.6-lo-': 12.5 20 2918 1.9 1.5*lo-la 10.5 33 2.0 1.9 6.1.lo-'" 10.5

z: % -17 a:0

;y l;."o 11.8 1.9 2.2.10-la 1.3*10-09 58!E 13 4:5 10:5 3tt -iI 297-i 10.5 10.5 88 18 210 1.9 2.0*10-'" 10.5 352 i0.S 58 6.0 16 16 2.3 1.9 3.2.10-09 10.5 AR tin 2n 1.9 5.5.lo-" 10.5 1.9 3.9* 1o-‘o 10.5 130 -.15 19.0 1.9 1.9.lo-‘3 10.5 1.9 2.7.10-l' 10.5 ::: 1.9 6.2.lo-" 10.5 134 -24 2.3 1.9 2.3.lo-" 52 2.3 1.9 ::97 -7 2.0 1.9

88 ;:

50 18.9 4.5 -28 35 16.0 tza -41 4.5 55 -48 7.2 :fl 47 9.7 lx %E 3!E 26 2:1 fii so a;3

16 51

SE

3x: 328

35:

2;:

::: 12 320

::

SmN SLAT

215

_“”

““.“”

““.I”

1 1 3

1

” ““.-n n.4.53 3 ‘3 3 21

m24

A”.“. uA-vvv 20:45 91-056 17:47

ill-““”

aim6

“”

1

IRA

3

tlA.!i7

91-033 08:57

(Il_fMA

1 3 3

111:

__.__ 7 14:54

““.“.

* A nA.hi

j

i

0 i4:39

_ -..__

1 3 3 1 3

91-004 lo:23 91-005 13:16 91-006 05:32 91-006 14:09 91-OJO 00:07

185

161 162 163 164 165_

No.IMP.DATEEAR

Table 4. (Continued)

: 1

a

4 1 5

2

:

3

i

49

14

19

19

0

0 0 19

19 3

1z 21

ii 2ii

0

0

n

011

0

0

11

18

3

36

8 19 ::

22 12

l? 8

50

49

4 21

21

Ji

21

11

2;

2:

71

i 11

ii

30

-6

1 7

12 1 4

11

1 4 8 :

0

15

ii

15 12

0

14

9 0

-5 5 6 0 6 6 1115

7

7 0 4 13 8 7 l3 O 6 14

1

0

0 1

0 1 0 0

1

1 0 0 l 0

1

1

1 1

i 1 1 1

1

1 1 1 1 1

9 6

iZ 3 11 15

iS 15 15 0

0 6 01

1

1

61

18

56

18 26

47 63 13 29

47

0

8

2

2 31

0 25 1 2

20

1

1

1

1 1

1 1 1

0

0

0

0 0

0 0 0

0

0 0 0 0 0

1

1

1

1 1

1 1 1

1

1 1 1 1 1

0

0

0

0 0

0 0 0

0

0 0 0 0 0

1

1

1

1 1 1

1

1 1 1 1 1

i 0 i 0 i

1

1 1 1 1 1

WXtGGGG 5 23 31 0 40 0 6 31 18 1

26 27

274

1

0

1

0

1

i I 47 5i i 0 i 0 i

0

16 iii 13 0 i

10

13

14 8

12 10 5

15

15 14 10 1:

IAEACAITETEEIPAPEIECPHV f&JlA

2 166 3 36 ; 2:;

S Fi

2

2 2

1.04505 1.02974

1.02601 1.02880

0.99587

175.5 172.5

171.7 172.3

165.0

155.3 156.8 157.0 157.0 157.2

0.96052 0.96544 0.96616 0.96616 0.96688 2 2 2 2 2

151.0

136.6 139.5 140.9 141.1

131.6

109.7 111.2 112.1 112.6 117.3

0.94805

0.91761 0.92219 0.92472 0.92516

0.91148

0.90626 0.90722 0.90662 0.90635 0.90479

LON

2

2 2 2 2

2

2 2 2 2 2

R

-4.5

-4.5 -4.5

-4.5

-4.5 -4.5 -4.5 -4.5 -4.5

-4.4

-4.0 -4.1 -4.1 -4.1

-3.6

-2.5 -2.6 -2.7 -2.7 -3.0

LAT

0.35627

0.34814 0.34944 0.34986

0.33166

0.30396 0.30857 0.309 0.3( 0.3(

0.2!

0.24162 0.25177 0.25674 0.

0.

0.14004 0.14581 0.14965 0.15156 0.11

RF,

999 63

999 999

999

999 999

999 999 999

1:: 37

ROT

999 226

9 Q .-

9

8 s

I I 6

11 1

Q:?.

-__

SLc,N SLAM

7*2 ._._

V

*

i.

VEF

M

MEF

m ; .-

D

m

k

91-072 o!z 91-072 04~47 91-072 09:06 91-072 13:25 91-073 06:41 91-073 06:41 91-073 19:37 91-074 08:34 91-075 06:Oa 91-077 22:50 91-077 22k50 91-n7fl 11 -47 _- _. - __. 91-081D 06:55 91-O%Z 02~04 __ __ 91-083 16:54 91-083 21:12

0

3 5

i

:

3 3 3

3

i

0 0

3 4

3 ;

3 3

i’: 31

E:

ii

26 49 iS 21 19

27 28 31

55 49 21 3

23

21 49 -i 10 14

23 22 24

55 28 25 25

26 i0 27 26

20 IZ 27 21

3

0 0

59 25 73

5 212 4 114 50 4 39

1 s

::6

49 9 13 23 57 24

;; 25 53 21 iS 30 14 9 49 49 30 9 28 11 24 ::

30

26 2;

:;:3

28 5 9 19 ki 4

4 16 1 47 2 242 3 26 6 9 1 95

1 97 2 : 3 3 17 a Si 4 73 3 250

;; 30 30 26 11 28 19 21 ;;

;; 21 52 19 4 26

; 2;; 3 13 5 3 3 a30 1 34 4 222

; 2;; 4‘ 242 0 : 30 2 16 4 144 3 236 3 64 ; ;;

24

0

4

19 23 8

6 23 12

10 22 -i 9 17

10 23

30 30 20 19

1 9 4 21 -7 13 22

25 19 1 10 31 2

1;

1:

17a 9 30 22 -i 12 17 12 14 21 24 1;

17

14 25 6

5 6 15 12 11

46 9

13 12 8 10

11 10 4 6 ii 7 a

7 10 10 6 4 1

13 lo 5 14 15 iS 6 7 11 4 7 14 8 15 5 13 1;

9

9 10 13

0 ; 5 a 15 5 0 0 5 5 7 0 7 0 13 0 13 5 14 8 6 0 15

0 6 0 a 0 5

5

0 13 5 7

11 5 0 7

0 6

5 5 15 5 ii 15

4 7 3

12 152 15

10 15 15 0 9 0 7 5 it+ 0 10 5 8 6

15 1: 4 12 ii 5 15 13 4 15 1 15 4 15 5 11 6 15 5 11 5 14 11

15 9 14 -0 0 2

GE 1 i 1 1

0 0 1 0

0 1

0 0 0

0

1 0 0

37 56 45 47

60 47

1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1

1

1

1 1 i

1

1 1 1

22 45 25 31

1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 i 1 1

0

3 01 1

3 0 31 0

1 1 1 1

1 1 i 1 1 1

1

1 1 1

3 I1 31 6 1 01010 3i i 0 1 0 1

0 31 0 0 0 0 31 1 31 0 29 2 0 3 0 o 15 2

iii

0 31

;

31

46 0 60 0 iS i 6 31 0 0 47 44 310

47

31 47 31 8

47 57 44

12 19 53

58 24 0 61 60 53 47 31 26 31 28 24 47 14 0 43 31 21

ii

47

;t

1

;

14 0 2 0

~U~~~

1 60 45 31 0 1

01 1 1 1 0145 i i 0 1 0 1

1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0

1 ; 0 1

01 1 0 1 0

IAEACAITETEEIPAPEIECPHV

3 2

E

S

3 1 1 3 i 3 3

1 3 3 3 1 3 1 3 1 3 3 3 3 3 1 3

i

3

5

91-057 1 91-056 23:59 22:06 3 9i-nm __ __- iat _- .__ 1 91-058 17:14 i 91~nE9 1 __ __- -23:26 91-060 06I:04 3 9i-061 22~53 91-062 20:2a 91-063 05:05 91-067 04:OO 3 91~nti7t-m19 1

91-084 00:08 14:28 91-097 91-098 02:Ol 91-101_ lx!21 __.-91-10: 3 20:04 91-104 17:38 91-104 IT:38 91-105 91-105 10:54 91-105 :x:::: 91-105 91-105 ;;:g 91-108 Llli:: 91-109 b 91-101 la:26 91-1lC3 16~00 --.-_ 02:31 ii_iij i&&j ;:z j g1-112 264 91-113 13:02 265 91-113 17:2i 266 91-117 07:37 267 91-116 00:53 268 91-119 2O:Ol 269 91-120 08:58 270 91-228 14:02

246 247 248 249 250 251 252 253 254 255 256 257 256 259 260 261

0 231 232 233 234 235 236 237 238 239 240 a41 -__ 242 243 244 245

217 216 218 - __ 239 220 - __ 221 222 223 224 225 226

No.IMP.DATECAR

Table 4. (Continued)

1 1 1

1 1 i 1 1 1

1

1 1 1

i 1 1

1 1

1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0

0 0 0 0 0 0

0

0 0 0

0 0 0

0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

:

0 0 a

0 0

6

i

1 1

0 0

1 1

0 1 0 0 0 0

0 0 0 0 0 0

0

0 0 0

0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i

0 0 0

0 0 0 0 0

1 1 1 1

1 1 l 1 1 1

1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i

:

1 1 1

1 1 1 1

1 1

2 2 2 2

2 2 i 2 2 2

2

2 2 2

2 2 2 Z 2 2

2 2 z 2 i 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 i 2 2

1.42946 1.44084 1.44424 1.99695

221.9 222.9 223.1 264.0

216.9 216.3 214.9 217.2 217.7 218.5 219.0 219.4 219.5 221.5

1.37309 1.38729 1.35218

214.6 214.7 214.6 214.8

200.3 209.1 209.9 211.9 213.6 214.1 214.1

180.7 181.6 181.9 185.6 185.8 186.8 187.9 187.9 190.2 190.2 190.3 190.5 191.1 191.1 191.6 192.0 192.8 195.0 195.0 195.5 196.9 198.3 199.6 199.7

176.8 175.7 177.3 i77.5 178.8 179.1

LON

1.3’ 7656 1.3, _~_a235 1.39159 1.39620 1.40081 1.40196 1.42489

1.34869 1.34985 1.34869 1.35102

1.21342 1.29381 1.30082 1.32070 1.33820 1.34403 1.34403

1.07412 1.07929 1.06137 1.110462 1.1’ _._0570 1.11217 1.11977 1.11977 1.13515 1.13515 1.13625 1.13736 1.14180 1.14180 1.14514 1.14849 1.15409 1.17102 1.1 7102 1.1 7443 ~~~ 1.18582 1.19728 1.20765 1.20880

1.05192 1.04603 1.05490 1.05589 1.06291 1.06493

R

-2.5 -2.5 -2.5 0.6

-2.8 -2.8 -2.8 -2.7 -2.7 -2.6 -2.7

-2.9 -3.0

-3.0 -3.0 -3.0

-3.8 -3.3 -3.3 -3.2 -3.1 -3.0 -3.0

-4.4 -4.4 -4.3 -4.3 -4.2 -4.2 -4.2 -4.1 -4.1 -4.1 -4.1 -4.1 -4.1 -4.1 -4.1 -4.1 -4.0 -4.0 -4.0 -3.9 -3.8 -3.8 -3.8

-4.5 -4.5 -4.5 -4.4 -4.4

LAT

999

if 73 :;

ROT

0.43980 0.44664 0.44881 1.70607

0.41539 0.41751 0.42117 0.42312 0.42515 0.42568 0.43722

0.41417 0.41222 0.40769

0.40674 0.40706 0.40674 0.40737

0.38765 0.39590 0.39693 0.40036 0.40411 0.40554 0.40554

999 999 999 999

z:: 999 999 999

991

3:: 55

1592” 2::

3::: 999 66 4 347

0.36754 0.36607 0.36810 0.37366 0.37389 0.37519 0.37661 0.37661 0.37914 1:; 110 0.37914 999 0.37931 0.37947 0.38012 tt 0.38012 248 118 0.38058 0 0.38103 0.38175 ;f 0.38370 0.38370 68 0.38405 24 6.38519 110 0.38624 53 0.;~:;; 3:: 0.

0.35885 0.35665 0.35992 0.36026 0.36263 0.36328

Ita

9;; 16 -20 -24 51 40 27 16 45 -17 27 8 34

999 229 236 130 238 184 249 238 254 229 256 249 255 159

999 999 999 999

999 999 999 999 999 999

225 264 201

254 240 164 253

13.8 3i.i

12.7 5.9 12.7 26.1 14.0 32.6 39.6 70.0

:;.I 19:0 2.0 29.8 10.6

12.7 7.2 39.6

999 999 999 999

999 999 999 999 999 999

49 48 25

-:: 13 38

2.5 40.9 12.7 39.6

40.9 11.8 il.8 4.5 15.0 29.8 4.5

52.6 15.0 19.0

:*IF 9:7 4.5

16 24:4 49 7.2 48 12.7 -9 16.0

32 99:;

37 -23 -18

157 999 999 288 222 201 272

V

4.8 235 9.5 11 2.3 16 2.0 31 2.0 999 22.4

SLAT

:x3 227 ja6 219 999 240 231 237 240 235 226 231 224 238 239

$0~

.

1.6 1.6 ;*;

::f 11.8 11.8 -1.9 1.7 2.0 1.9

1.7 1.9

:.: 1:9 1.9

1.6 1.9 1.9 1.6 1.9 1.9 1.6

1.6 1.9 1.9 2.4 1.6 1.6 1.9 1.9

9.5 1.9 1.9 1.9 1.9 7.7

1.6 1.9 1.6 1.9 2.0 1.9 1.6 i.9 1.9 1.9

1.6 1.7 1.9

VEF

. lO-o9 . IO-:; .;;I,, . .

4.1 1.2 ;*;

2.6.10-” 1.2.10-f’ 3.0 * lo-” 3.0. lo-=

4.4.10-l’ 1.2. lo-” 4.1 * 10-l’ 1.1. 1O-12 2.0 - 10-12

3.6. 1.0 * IO-” 10-l’ 1.1 . IO_‘0 9.6. IO-" 3.6. lo-” 2.3. lo-” 1.4. lo-‘O 1.5.10-16

6.2. 1.6. 10-l’ IO-” 9.2 * 10-l’ 2.0 * lo-o8 6.4. 10-l’ 1.4. lo-”

1.5. lo-” 8.6.10-13 1.7. IO-” 3.0 * 10-07 2.2 . lo-l0 1.2 * 10-10 2.0. IO-” 4.4 * lo-la 1.2 * lo-‘2 2.9 * 10-‘a

6.9. IO-” lo-” 3.6. 4.1 * lo-”

M

10:5 10.5

;*;

10.5 7.1 10.5 12.1

1t: 10:5 6.0 10.5

1;: 10:5 23.7 6.0 6.0 10.5 10.5

26;:‘: 10:5 10.5 10.5 1303.9

10.5 6.0 10.5 10.5 10.5

13.5

1::: iii

67.; lo:5 10.5 10.5 52.8

MEF

&

g r, $ q 2 9. 5

y

3 3 3

2 :

“”

1”.

“..“”

-

3

1

17.50

3

ii$iS ia;ii 3

axn7n

3 1 3 3 i 3 1

““.

“”

““.

_

.

.__

-

3,::E% E : 325 92-08815:15 3

g;

1””

314 14:2? 315 91-361 91-36504:44 716 omn4 n3m "*" 92_06R 317 _- I__ __.__ _ n7:46 _..__ __ _.a 15~18 319 91R 92-07223:56 92~IT7 3 0 92-07601:16

312 91-33' 313 91-36012:34 3

311

___ 91-33.1 _- -..

310 91-328

fifi

R

58 36 19 11 6 2 - --_ 42 10

52 11

_

-__

??

-_

i

4 103 0 24 25 2 177 a

i 22 31 i5

i0

10

23 12 9 li

l3 9 19

6 27 13

20 -7

1.1

;; 20

12 21 12 49

22

22

7

:

6 ; 7

R

1 1

1 1

10 a 0 1215 01 1 10 9 0 1

615 14 6 6 5 10 a

01 0 1 01 01

Ii

S Oi 0 11 6 01 0 1 1

13 5 la

9

01

7 0 9 01 1 9 0 i

!:

i 1 1 1 1

1 ; 1

4

11 7 a

5 15 15

0

0 1 8 0 1 0 4 1 6 01 0 1 5 0

5 0 6 8 ; 0

14 3 14 7 3 9

3 12 2 5 0 01 1 9 s 01

14 11 15 13 0 0 1 1 11 12 6 0 1 --!.i9 8 0 1 13 15 0 1 1 10 10 9 0 1 15 6 0 1 1 1n 11 12 9 0 I -i i0 i0 ti 0 i

13 5 3 3 2 3 10

215 9 a 10 10

10 13 a 21 9

9 9 17 10

:13

7

11 41510 15 10

1; ! 23 9 3 9 a 12 20 6

1

:i

9

6

x 8 4

:i

::

20

lx 10 11

5 0 6 6 0

1 1 1

314 0 1 5 6 01

4 7 5

8 8 0 4 5 0 3 15 0

il! 1S lj 11 11 10

1

x.5

6 4

11 14 23 8

17 19

9 10 2: 1;

4 9 14 11

2 167 14

1 225

3 2

2

; 2:: 1;

1 248 2 3 231 22 2 217 9

2 52 13 z ara -9

2

2 201 13

91-310".."" 91-30? 13:15 g 91-31208:23 1 9i_m7 i7t49 3 91-318_11:041

n7.m

; 2;; :;

3

:i

14

;

57

x 2: 23 2 244 14 2 223 13 4 54 27

2

a -0 ii 1 230 7 a 242

”1 3 1 3 1 3 1 3

306 91-326 91-32001:54 307 13:12 3 308 91-327lo:46 3

““”

302 301 303 7nd 305

I

91-26722:49 91-27121:43 91-27206:21 91-274mrn4 16:19 91-275““.“” 91-27605:16 __ ~~ 91-27707:09 91-28008:29 91-28309:50 9i-28500:39 91-28615:29 91-288 ” ” ” ” lo:37 91-29: ; ;;A; 91-29t 91-30: 5 17i19

_ 1 24

286 287 288 289 290 291 292 293 294 295 296 ”297 ” 298 299 300

7 20

a 21

24 27

27 23 25 11

3 100 55 22 20

3 237 231 22 19 3 46 1 53 21 6

3

3

:

20 xx

5 00:12 8 18~48 3 283 91125 ; It;:;:; f;; ;;-;g

;;

3 230 22 2 251 14

“”

3 3 3

;;;

19 13 :z 51

“”

;;-g

“.”

271 91-23102:26 4 12:24 , u1:20 274 91:243 275 91-24tf ;A:;; 276 91-24112li31 277 nr RAII nr.na 01-1Tcl ""."I 278 91-25003~43 279 91-25101:18 280 91-25318:oo f '= 10:34 it; ;:-;;;

IAEACAITETEEIPAPEIECPHV ?tlJJ

i

No.IMP.DATEEAR

Table 4. (Conrinurd)

0 0 0

1 1 1

47 19 35

i

1 1 1 1

0 0 0 0

1 0

1 0 10 1 0

1 0

ti i 0 010101 0 1 0 010101

0

0010101

0

0 0 0 0

0

0 3 1 10 0 0 1 0

31 0101 0 1 0 1 0 010101 0 1 0 1 0

20 15 31 3 1 0010101 37 0 1 47 31 1 0 0 1 47 16 1

12 0 37

29 0 47 0

Oi 1 0

10

1 0 101 lo

1

1

1

1 1 1 1

1

1 1

1

1

1

1

1 i

1 1

:

1 1

i 1 1

1 1

1 1 1

0 1 0101 0 1 0 0 1 0

1 0 1 0

1 0 1 0

10

1 0 1 0

1 0 1 0 1 0

8 :

0 0

0 0

8

37 0 36 01 1 0 39 0 lo 36 010101 45 Oi Oi 44191 0 39 010101 0 0 1 0

9 2j i 0 0 1 59 31 42 0 : 21 1 1 41 01 59 31 1 47 0 1

0 1 0 1

i

0 0

0 0 0

1 0 2 10 01010

0 1 0 1

a;

:t

47 43 46 0

15 40

45 47 47

37 28 18

WXBGGG

2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2

2 2 2 i 2 2 2

2 2 2

E 2

2 2

$ 2 2

2 2

2 2 2

LON

RE

2.19813 314.9 2.20576 315.9 2.19641 316.1

2.26753 2.26869 295.7 296.5 2.26959 297.3 2.23022 311.5 2.22 2.22336 '391 312.4 312.5 2.21858 313.2 2.21 m-416 313.8 2.21386 313.9

2.24789 290.5 2.25186 289.6 2.26712 295.5

2.23094 2.23946 286.5 288.0 2.24056 288.2 2.24186 288.4 2.24228 288.5

2.18526 280.5 2.19180 281.2 a.aa 1473 282.8 2.21 2.21649 _.__441 284.4 284.1 2.21939 284.8 2.22761 286.0 2.22865 286.2

2.15560 2.16281 277.3 278.1 2.16653 278.4 7n1a IL 2.1."," 97n I,"," 2.17417 279.3

63 !!

ROT

1.1 1.2 1 I A._

2.46391 2.50445 18: 2.52562 9 C‘lfiKR l\k I."~""" A"" 2.56960 1E

3.05 i471 145 3.05738 3.03136 2:: 3.00979 41 3.00832

Y

39

3.9 2.93152 2.96873 Ef 305 3.9 2.92317 201

3.8 3.8 3.9 3.9

2.9 3.0 3.20435 3.21705 3.0 3.22876 3.8 3.08810

1:: l:

2.92429 10: 4 2.98309 2.99085 3.00003 125 3.00305 145

2.81516 3:: 2.82858 357 2.84744 2.90180 17 2.90879 101

2.5 3.04367 2.6 3.07324 2*g 3*20016

2.3 2.4 2.4 2.5 2.5

2.2 2.2 2.3 2.3

1.9 2.63482 2.0 2.67407 353 2.1 2.75370 167

1.7 1.7 1 IL a." 1.8

354 10 999 127 Y

fS

iii T 15

2.04646 :3 2.03304 2.08659 127 9 noall, a7 ".""""I

0.9 1.0 1.97098 1.91125 309 13 1.1 2.01420 97 I;1 2;01959 156

0.7 1.74447 0.8 1.79654 0.8 1.80475

LAT

i:iiiit;ii ii::ii 1.3 2.09791 272.0 1.2 2.16075 2.10523 2.10317 2.11345 272.5 273.4 ;.; . ;.;a697 . 3895 2.12388 274.3 1.4 2.34841 2.29282 2.13442 275.3 1.5 2.13536 275.4 2.14229 276.0 1.6 1.5 2.39073 2.35342 2.14411 276.2 1.6 2.40060 2.14547 276.3 1.6 2.40799 2.14815 276.6 1.6 2.42269

2.07432 2.07148 270.0 269.8 2.08272 270.7 3mkCdP cwncr

2.04495 267.6 2.05813 268.7 2.06746 269.5 2.06R62 269;5 -.___.-

2.00627 264.7 2.01866 265.6 2.02058 265.8

R

257 999 283

3::

10 29:

302 332 337 354

299 339 312

272 277 340 335 326

262 319 216 288 320

312 244 301

7nn "Y" 275

308 3::

264 242 999 300 305

280 303

CG; 58: 267

901

Sk! 290

280 215 318 293

312 313 291

SLON

V

X:l 9.7

gx: 1;:: -45 19.9

51 16.0 -39 2.3 -39 2.0 41 9.2 54 16.0

5: t; -34 9:2 51 19.9

-17 53 18.3 2.0 50 9.7

E 'E -9 3:2 -28 16.0 -42 18.3

55 18 36.5 24.4 28 2.3 52 12.7 -8 9.7

-G -53

25 11 12.2 7.2 -12 12.7 -24 -v1 de; X." 54 19.0

55 12:7 99s 2.5 -27 14.0 -14 5.4

t: 9 fE 19.6

:g ;;*: 49 26:4 53 35.2

38 9.2 16 16.0 -27 2.0 _* -x ,crn A"."

53 31 52.6 24.4 -5 40.9 -40 19.0

22 9.7 17 19.0 48 7.2

SLAT

M

2:2: lo-” 4.5*lo-'0 7t2.in-ls ..-

f*! lo:5 ins A"."

66:: 6.0 10.5

10.5 10.5 10.5

MEF

1:a- lo-” 1i.i 2.5-lo-" 10:5 i r;.in--11 ins _.I A" 2.a.10-'1 iii:'j

3.o*lo-'a 1.7.10-'" 1tl:: l.O*lO-'" 6.0 1.9.lo-'" 6.0 ;.;- ;r;; 12.2

t::

t-8 10:5 10.5 10.5 1.0* lo-” lo-‘” 4.1. ::2 2.7.10-l' 12:s 9.5* 10-11 1.5.lo-" 66::

3.8--lo-” 2.0 10-l’ 4.1.lo-” 1.8*lo-” 3.3* lo-l3

1.3.10-1s t-X 7.8. lo-" 1.1*10-09 10:5 4.4.lo-" 1.1 .10-l' t.oO

t::

1:::

1.9 4.1*10-09 5.2-lo-" 10.5 10:5 1.6 8.7*10-" 6.0

1.6 1.9 1.6 1.6

1.6 1.9 8.4 2.3*.1O-1a lo-" 1.6 3.1.lo-" 1.6 1.4- lo-=

1.6 1.5 1.9 1.0.10-'f .lO-" 1::: 1.9 2.0.10-" 10.5

1.9 2.0 1.6 1.6

1.6 1.9 1.9 1.9

1.9 1.6 2.4. 5.3-10-f: lo-" 10.5 6.0 1.9 3.4.10-'2 10.5

1:9 1.9 I a A.1 1.9

1.9 1.6 1.6 1.6 ;.;

1.6 6.5 1.9-lo-” * lo-=

1.6 4.8 6.6*lo-" -10 -"_-1s 2E 2.4 1.6 1.5.10-': 6:0 1.6 3.1-10-'5 6.0

1:s 1.9 ia a.1

1.6 7.9 9.8-* 10-l' lo-lS 1.6 2.9.10-f ;.; f.i* ur;;

1:9 2:a* 10-12

;.; :.;* ur;;

VEF

92-306 92-25003:l'l 22:51 3 1 92-30800:49 3 92-30801:05 3 92-30801:06 3 92-30806:26 3 92-31110:18 3 92-31406:12 1 92-3250o:oo s

348 349 92-325 92-33317:31 10:40 3 350 92-34315:09 1 351 92-34623:21 3 352 92-34904:52 1 i 353 92-349-~:29 16 354 92-35216:3'73 355 92-35309:53 1 1.56 n9m 1 ___ 92.353 _______.__ _ 357 92-35814:59 3 358 92-36315:4'73

340 339 341 342 343 344 345 346 347

328 32'792-119 92-11808:5'7 02:45 1 329 92-13823:ll 3 330 92-14608~04 1 331 92-15104:33 3 332 92-15822:03 1 333 92-15915:19 3 B ~~ 19:20 334 92-16lL ~~ 1 335 92-1?400:26 1 336 92-18003:07 3 33'792-209lo:18 3 338 92-22315:07 3

161 0 245 231 23~ 219 1;;

a;

x

:%

15 _-

3 _ 219 ___ 19 __

:

28 6 15 49 15 i4 52 11

236 192 209 26 150 209 228 242

EE 10 9 29 56

23 28 56 27 24 i4 58 13

4 3 6 4 4 2 6 2

: % 'S 2 238 9 3 25 20 6 5 59 6 239 56

4 6 108 10 59 2'7 49 61 4 24 25 27

14 19 19 14

l2 14 28 %'I __ __ 21 23 2; 2;

15 23 0 14 116 11 1 213 5

3 ;

f 4 3 4 3 :

3

k 326 92-11412:29 1

5 '7 13 13 1 14 14 5 12

t

11 12 13 15 13

8

-i e 1 15

19

10 19 1: 13 30 __ 13 9 4 13 30 5 8 14

31 25 12 8 6 1 9 29 31

:

22 19 1 4 15

8

4

7

i 1

0140

10 lj 0 15 15 0

0

i 1 1 1

-6 s ti 0 12 0 14 15 0 15 0 1

1 1 1 1 1 1 1 1 : 1

0 1 0 0 0 0 0 1 0

1 1 1 1 1 1

ZS 18

1 1 1 1 1 1 1 1

31

i i 3 1

010101

i 1 1 1

5

3 1 1

4 0 0 4 2 1 1 0 0

i0 i 13 0 31 0 45 31

31 15 6

47 31 30 26 30 8 31 31 31

0 0

ti 0 0 0

2

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ti 0 0 0

n

i 0 1 0

i 1 1 1

2

1 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

14 7 1 21 0 1 45 14 1 8 31 1 36 8 1 37 0 1 12 1 1

1 0 1 0

0 0

1 0

1

i 1

1

1 1 1 1

2

Z 2

2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2

2

1 1

1

B E p, HV

5 31 41 9 1 5 0 3 1 30

.E, 1

0

2

wiio~fi

25 31 1

E PA

1; 3 1: 14 S 0

15 8 0 5 10 15 12 15 9 15 415 1 14 0 4 10 5

11 011 14 6 0 15 0 1 15 0 1 15 8 0 8 6 0 9 15 0

IA EA CA IT ET

S

8 29 19

No. IMP. DATE C AR

Table 4. (Continued)

LON

89.0

57.2 65.0 76.2 80.6 83.5 84.2 88.1 89.0

F&g ROT

0.21280 0.73584 0.20008 0.20001 0.20000 0.19853 0.17807 0.16040 197 0.09:

2.15866 2.04673 2.03621 1.90098 1.82332 1.73181 1.29823 1.09352

-0.3

0.1

0.9 1.5 0.05272 0.09395 0.0 0.00004 -0.1 0.01729 -0.2 0.02870 -0.2 0.03118 -0.3 0.04644 05008 -0.3 0.1

4.3 2.7 2.6 2.6 2.6 2.6 2.4 2.2 1.5

4.4 4.4 4.5 4.5 4.5 4.6 4.5 4.5

142 x:

156 129 110

118 180 156 2::

145 115 55 1::

28t 1::

69 999 287 150

la1 142 %

4.2 2.60220 2.58870 2:: 999 4.3 2.22769 2.33026 lo5 4.4 125

4.2 2.64574

LAT

0.99348 95.8 -0.5 o.KE 1.0066'7102.2 -0.7 0.10068

0.98515

1.07673 1.03437 0.98486 0.98266 0.98254 0.98265 0.98444 0.98515

1.19618 1.54678 4::; 1.18414 41.7 1.1840'7 41.7 1.18406 41.7 1.18265 41.8 1.162'77 44.4 1.14518 46.8 1.08091 56.5

2.02644 331.8 1.99843 333.9 1.99574 334.1 1.96032 336.8 1.93920 338.3 1.91353 340.2 1.77897 349.8 1.70286 355.1

2.12543 2.12881 323.5 323.2 2.06757 330.5 328.5 2.04324

2.13824 322.3

R

135 130 124

1:: 100 128 29 113 141 147

1:: 103 111

:3

103 101

44 999 298 3::

t: 4:

2.0 7.2

9.7

V

1.9 1.9 1.9 1.9 1.9

4.4.lo-‘0 2.2.10~" 2.5.lo-" 9.2 *lo-!! 2.4.10-'"

2.1 4.5.10-I0

7.2*lo-" 1.8W:; 3.53.5.

. 10.5 10.5 10.5

E

14.3

10:5 6.0 *nc

-39 9.7 1.9 4.4.10~I1 10.5 45 19.0 1.9 5.2.10-l' 58:::: 49 11.8 11.8 2.9.10-l'

-26 7.2 -51 2.3 -30 -15 29.8 2.0

:t :t: 32 419 -46 2.5 -34 70.0 -14 2.0 33 2.0 11 29.8

1.9 1.6 1.9 1.9

E ;C$

2.4-lo-” 1.9 3.3 * 10-11 3.6. lo-" 1.9 6.0 -lo-”

MEF 10.5

M 1.9 2.8.lo-"

VEF

-50 2.0 18 2.3 19 2.0 g:: 192'07 1.8 1.9.IO-" 1.9 3.0*10-'3 -42 19:0

999 2:: 999 -35 t::

32

SLON SLAT

2:

F

2 z

c

5

g

0

z: x P ;f

4

e

2

E. Griin et al. : Three years of Galileo dust data

time from launch

969

1 days

1

Fig. 10. Divine’s (1993) model of the Galileo “big” impact rate (cf. Fig. 4). Contributions to the impact rate from five different dust populations are shown separately as well as summed together. The model calculations take into account the orbit of Galileo as well as the detector geometry and sensitivity

the model adjusted

values (Fig. 10). The model values for the new effective mass threshold

shown are for “big”

impacts. This threshold is about a factor 10 below the value used by Divine in his original modeling. For most of the mission, the impact rates are matched by the core population which has been defined to represent the majority of interplanetary dust data including zodiacal light observations. At this stage, only impact rates are modeled by the Divine model. However, we are upgrading the model to include impact directions and impact speeds as well. Besides comparing the dust observations with theoretical models, future data ianalysis activities will include identification of “small” impact events in the Galileo data set (cf. Baguhl et al., 1993, dead-time and measuringtime analysis of Galileo data, and finally, an analysis of measurements by the primary dust charge channel.

Baguhl, M., Griin, E., Linkert, D., Linkert, G. and Siddique, N., Performance of the Galileo and Ulysses dust detectors. Proceeding of the Workshop on Hypervelocity Impacts in Space (edited by J. A. M. McDonnell), pp. 153-159. University of Kent at Canterbury. 1992. Baguhl, M., Griin, E., Linkert, D., Linkert, G. and Siddique, N.,

Identification of ‘small’ dust impacts in the Ulysses dust detector data. Planet. Space Sci. 41, 1085-1098, 1993. Baguhl, M., Griin, E., Hamilton, D. P., Linkert, G., Riemann, R., Staubach, P. and Zook, H., The flux of interstellar dust observed by Ulysses and Galileo. Space Sci. Rev. 72, 471476, 1994. D’Amario, L. A., Bright, L. E. and Wolf, A. A., Galileo trajectory design. Space Sci. Rev. 60,23-78, 1992. Divine, N., Five populations of interplanetary meteoroids. J. geophys. Res. 98, 17029-17048, 1993. Griin, E., Zook, H. A., Fechtig, H. and Giese, R. H., Collisional balance of the meteoritic complex. Icarus 62,244272, 1985. Griin, E., Baguhl, M., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Motill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Siddique, N. and Zook, H. A., Galileo and Ulysses dust measurements : from Venus to Jupiter. Geophys. Res. Lett. 19, 1311-1314, 1992a. Griin, E., Baguhl, M., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., McDonnell, J. A. M., Morfill, G. E., Schwehm, G., Siddique, N. and Zook, A., Interplanetary dust near 1 AU. Proceeding of the Workshop on Hypervelocity Impacts in Space (edited by J. A. M. McDonnell), pp. 173-179. University of Kent at Canterbury, 1992b. Griin, E., Fechtig, H., Giese, R. H., Kissel, J., Linker& D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G. and Zook, H. A., The Ulysses dust experiment. Astron. Astroph_vs. Suppl. Ser. 92,411423, 1992~. Griin, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, I)., Linkert, G., Mortill, G. E. and Zook, H. A., The Galileo dust detector. Space Sci. Rev. 60, 317-340, 1992d. Griin, E., Hamilton, D. P., Baguhl, M., Riemann, R., Horanyi, M. and Polanskey, C., Dust streams from comet ShoemakerLevy 9? Geophls. Res. Left. 21, 1035-1038, 1994. Griin, E., Bagubl, M., Divine, N., Fechtig, H., Hamilton, D. P., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Siddique, N., Staubach, P. and Zook, H. A., Two years of Ulysses dust data. Planet. Space Sci 43,971-999, 1995a. Griin, E., Baguhl, M., Hamilton, D. P., Kissel, J., Linker& D., Linkert, G. and Riemann, R., Reduction of Galileo and Ulysses dust data. Planet. Space Sci. 43, 941-951, 1995b. Hamilton, D. P. and Burns, J. A., Orbital stability zones about asteroids II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus 96,43-64, 1992. Johnson, T. V., Yeates, C. M. and Young, R., Space science reviews volume on Galileo mission overview. Space Sci. Rev. 60,3-21, 1992. Riemann, R. and Griin, E., Meteor streams. asteroids and comets near the orbits of Galileo and Ulysses. Proceeding of the Workshop on Hypervelocity Impacts in Space (edited by J. A. M. McDonnell), pp. 12&125. University of Kent at Canterbury, 1992.